Emissivity of freestanding membranes with thin metal coatings

Freestanding silicon nitride membranes with thicknesses down to a few tens of nanometers find use as TEM windows or soft X-ray spectral purity filters. As the thickness of a membrane decreases, emissivity vanishes, which limits radiative heat emission and resistance to heat loads. We show that thin metal layers with thicknesses in the order of 1 nm enhance the emissivity of thin membranes by two to three orders of magnitude close to the theoretical limit of 0.5. This considerably increases thermal load capacity of membranes in vacuum environments. Our experimental results are in line with classical theory in which we adapt thickness dependent scattering terms in the Drude and Lorentzoscillators.

[1]  L. N. Hadley,et al.  Reflection and Transmission Interference Filters Part I. Theory , 1947 .

[2]  W. von Münch,et al.  Thin metal films as absorbers for infrared sensors , 1993 .

[3]  Andrew Aquila,et al.  Design and performance of capping layers for extreme-ultraviolet multilayer mirrors. , 2003, Applied optics.

[4]  Laurence S. Rothman,et al.  Journal of Quantitative Spectroscopy & Radiative Transfer 96 , 2005 .

[5]  G. Mahan,et al.  Infrared absorption of thin metal films: Pt on Si , 1983 .

[6]  S. Bowyer,et al.  Boron and silicon: filters for the extreme ultraviolet. , 1985, Applied optics.

[7]  Svend-Age Biehs,et al.  Thermal radiation and near-field energy density of thin metallic films , 2007, 1103.3684.

[8]  D. Lunney,et al.  Atomic Data and Nuclear Data Tables , 2015 .

[9]  H. Brongersma,et al.  Surface composition analysis by low-energy ion scattering , 2007 .

[10]  David L. Windt,et al.  IMD—software for modeling the optical properties of multilayer films , 1998 .

[11]  E. Palik,et al.  Optical Parameters for the Materials in HOC I and HOC II , 1997 .

[12]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[13]  Luigi Scaccabarozzi,et al.  Investigation of EUV pellicle feasibility , 2013, Advanced Lithography.

[14]  V. Banine,et al.  Comparison of experimental and simulated extreme ultraviolet spectra of xenon and tin discharges. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[16]  M. Francoeur,et al.  Size effect on the emissivity of thin films , 2013 .

[17]  L. A. Kuzik,et al.  Quantum size effects in the optical conductivity of ultrathin metal films , 1996 .

[18]  Martin Dressel,et al.  Temperature-and frequency-dependent optical properties of ultrathin Au films , 2008, 0808.2739.

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.