Sequential change‐point detection: Computation versus statistical performance

Change-point detection studies the problem of detecting the changes in the underlying distribution of the data stream as soon as possible after the change happens. Modern large-scale, high-dimensional, and complex streaming data call for computationally (memory) efficient sequential change-point detection algorithms that are also statistically powerful. This gives rise to a computation versus statistical power trade-off, an aspect less emphasized in the past in classic literature. This tutorial takes this new perspective and reviews several sequential change-point detection procedures, ranging from classic sequential change-point detection algorithms to more recent non-parametric procedures that consider computation, memory efficiency, and model robustness in the algorithm design. Our survey also contains classic performance analysis, which still provides useful techniques for analyzing new procedures.

[1]  P. Fearnhead,et al.  Poisson-FOCuS: An Efficient Online Method for Detecting Count Bursts with Application to Gamma Ray Burst Detection , 2022, Journal of the American Statistical Association.

[2]  V. Veeravalli,et al.  Multiple Testing Framework for Out-of-Distribution Detection , 2022, ArXiv.

[3]  G. Moustakides,et al.  Window-Limited CUSUM for Sequential Change Detection , 2022, IEEE Transactions on Information Theory.

[4]  P. Fearnhead,et al.  Fast Online Changepoint Detection via Functional Pruning CUSUM Statistics , 2021, J. Mach. Learn. Res..

[5]  Shaofeng Zou,et al.  Sequential (Quickest) Change Detection: Classical Results and New Directions , 2021, IEEE Journal on Selected Areas in Information Theory.

[6]  Ryan P. Adams,et al.  Active multi-fidelity Bayesian online changepoint detection , 2021, UAI.

[7]  Wouter M. Koolen,et al.  Testing exchangeability: Fork-convexity, supermartingales and e-processes , 2021, Int. J. Approx. Reason..

[8]  Seong-Hee Kim,et al.  : A score statistic for spatiotemporal change point detection , 2020 .

[9]  Oscar Hernan Madrid Padilla,et al.  A Note on Online Change Point Detection , 2020, 2006.03283.

[10]  Johannes Zierenberg,et al.  Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions , 2020, Science.

[11]  Yudong Chen,et al.  High‐dimensional, multiscale online changepoint detection , 2020, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[12]  A. Tartakovsky Sequential Change Detection and Hypothesis Testing , 2019 .

[13]  Robert L. Wolpert,et al.  Statistical Inference , 2019, Encyclopedia of Social Network Analysis and Mining.

[14]  Malte Londschien,et al.  Change-Point Detection for Graphical Models in the Presence of Missing Values , 2019, J. Comput. Graph. Stat..

[15]  Jasper Snoek,et al.  Likelihood Ratios for Out-of-Distribution Detection , 2019, NeurIPS.

[16]  Odalric-Ambrym Maillard,et al.  Sequential change-point detection: Laplace concentration of scan statistics and non-asymptotic delay bounds , 2019, ALT.

[17]  A. Haq,et al.  Optimal CUSUM and adaptive CUSUM charts with auxiliary information for process mean , 2018, Journal of Statistical Computation and Simulation.

[18]  G. Moustakides,et al.  Sequential subspace change point detection , 2018, Sequential Analysis.

[19]  Jon D. McAuliffe,et al.  Time-uniform Chernoff bounds via nonnegative supermartingales , 2018, Probability Surveys.

[20]  Nicolas Vayatis,et al.  A review of change point detection methods , 2018, ArXiv.

[21]  Hao Chen,et al.  Asymptotic distribution-free change-point detection for multivariate and non-Euclidean data , 2017, The Annals of Statistics.

[22]  Huan Xu,et al.  Sequential Change-Point Detection via Online Convex Optimization , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[23]  Paul Fearnhead,et al.  Changepoint Detection in the Presence of Outliers , 2016, Journal of the American Statistical Association.

[24]  Le Song,et al.  Scan B-statistic for kernel change-point detection , 2015, Sequential Analysis.

[25]  Stephen P. Boyd,et al.  Network Lasso: Clustering and Optimization in Large Graphs , 2015, KDD.

[26]  A. Tartakovsky Nearly optimal sequential tests of composite hypotheses revisited , 2014 .

[27]  M. Basseville,et al.  Sequential Analysis: Hypothesis Testing and Changepoint Detection , 2014 .

[28]  Leto Peel,et al.  Detecting Change Points in the Large-Scale Structure of Evolving Networks , 2014, AAAI.

[29]  George V. Moustakides,et al.  Multiple Optimality Properties of the Shewhart Test , 2014, 1401.3408.

[30]  Behnaam Aazhang,et al.  Online Bayesian change point detection algorithms for segmentation of epileptic activity , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.

[31]  Benjamin Yakir,et al.  Extremes in Random Fields: A Theory and Its Applications , 2013 .

[32]  David S. Matteson,et al.  A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data , 2013, 1306.4933.

[33]  Moshe Pollak,et al.  Shewhart Revisited , 2013 .

[34]  Alexander G. Tartakovsky,et al.  Efficient Computer Network Anomaly Detection by Changepoint Detection Methods , 2012, IEEE Journal of Selected Topics in Signal Processing.

[35]  Hao Chen,et al.  Graph-based change-point detection , 2012, 1209.1625.

[36]  Rebecca Willett,et al.  Change-Point Detection for High-Dimensional Time Series With Missing Data , 2012, IEEE Journal of Selected Topics in Signal Processing.

[37]  D. Siegmund,et al.  Sequential multi-sensor change-point detection , 2012, 2013 Information Theory and Applications Workshop (ITA).

[38]  Aleksey S. Polunchenko,et al.  State-of-the-Art in Sequential Change-Point Detection , 2011, 1109.2938.

[39]  Olivier Capp'e,et al.  Homogeneity and change-point detection tests for multivariate data using rank statistics , 2011, 1107.1971.

[40]  Moshe Pollak,et al.  Third-order Asymptotic Optimality of the Generalized Shiryaev-Roberts Changepoint Detection Procedures , 2010, 1005.1129.

[41]  Roummel F. Marcia,et al.  Sequential Anomaly Detection in the Presence of Noise and Limited Feedback , 2009, IEEE Transactions on Information Theory.

[42]  Alexander G. Tartakovsky,et al.  On optimality of the Shiryaev-Roberts procedure for detecting a change in distribution , 2009, 0904.3370.

[43]  Venugopal V. Veeravalli,et al.  Quickest Change Detection of a Markov Process Across a Sensor Array , 2008, IEEE Transactions on Information Theory.

[44]  Zaïd Harchaoui,et al.  Kernel Change-point Analysis , 2008, NIPS.

[45]  Wei Jiang,et al.  Adaptive CUSUM procedures with EWMA-based shift estimators , 2008 .

[46]  Moshe Pollak,et al.  ON OPTIMALITY PROPERTIES OF THE SHIRYAEV-ROBERTS PROCEDURE , 2007, 0710.5935.

[47]  Y. Mei Sequential change-point detection when unknown parameters are present in the pre-change distribution , 2006, math/0605322.

[48]  A. Tartakovsky Asymptotic Performance of a Multichart CUSUM Test Under False Alarm Probability Constraint , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[49]  David J. Kriegman,et al.  Online learning of probabilistic appearance manifolds for video-based recognition and tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[50]  M. Pollak,et al.  Nonanticipating estimation applied to sequential analysis and changepoint detection , 2005, math/0507434.

[51]  Mark Crovella,et al.  Diagnosing network-wide traffic anomalies , 2004, SIGCOMM '04.

[52]  D Siegmund,et al.  Mapping quantitative trait loci in oligogenic models. , 2001, Biostatistics.

[53]  Ross Sparks,et al.  CUSUM Charts for Signalling Varying Location Shifts , 2000 .

[54]  Moshe Pollak,et al.  Detecting a change in regression: first-order optimality , 1999 .

[55]  David Siegmund,et al.  The maximum of a function of a Markov chain and application to linkage analysis , 1999, Advances in Applied Probability.

[56]  Tze Leung Lai,et al.  Efficient recursive algorithms for detection of abrupt changes in signals and control systems , 1999, IEEE Trans. Autom. Control..

[57]  Tze Leung Lai,et al.  Information Bounds and Quick Detection of Parameter Changes in Stochastic Systems , 1998, IEEE Trans. Inf. Theory.

[58]  D. Siegmund,et al.  Using the Generalized Likelihood Ratio Statistic for Sequential Detection of a Change-Point , 1995 .

[59]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[60]  D. Siegmund,et al.  Sequential Detection of a Change in a Normal Mean when the Initial Value is Unknown , 1991 .

[61]  G. Moustakides Optimal stopping times for detecting changes in distributions , 1986 .

[62]  D. Siegmund Sequential Analysis: Tests and Confidence Intervals , 1985 .

[63]  M. Pollak Optimal Detection of a Change in Distribution , 1985 .

[64]  James M. Lucas,et al.  Combined Shewhart-CUSUM Quality Control Schemes , 1982 .

[65]  D. Siegmund Importance Sampling in the Monte Carlo Study of Sequential Tests , 1976 .

[66]  A. Willsky,et al.  A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems , 1976 .

[67]  H. Robbins,et al.  The Expected Sample Size of Some Tests of Power One , 1974 .

[68]  G. Lorden PROCEDURES FOR REACTING TO A CHANGE IN DISTRIBUTION , 1971 .

[69]  I. Eisenberger,et al.  Detection of Failure Rate Increases , 1971 .

[70]  G. Lorden On Excess Over the Boundary , 1970 .

[71]  S. W. Roberts A Comparison of Some Control Chart Procedures , 1966 .

[72]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[73]  A. R. Crathorne,et al.  Economic Control of Quality of Manufactured Product. , 1933 .

[74]  W. A. Shewhart,et al.  The Application of Statistics as an Aid in Maintaining Quality of a Manufactured Product , 1925 .

[75]  Hao Chen,et al.  New kernel-based change-point detection , 2022 .

[76]  A. Rinaldo,et al.  E-detectors: a nonparametric framework for online changepoint detection , 2022 .

[77]  B. Hamann,et al.  Change Point Detection , 2018 .

[78]  Venugopal V. Veeravalli,et al.  Quickest Line Outage Detection and Identification , 2016, IEEE Transactions on Power Systems.

[79]  Stuart Ball,et al.  Detecting a change , 2007 .

[80]  赵仪,et al.  Dual CUSUM control schemes for detecting a range of mean shifts , 2005 .

[81]  I. Pavlov Sequential Procedure of Testing Composite Hypotheses with Applications to the Kiefer–Weiss Problem , 1991 .

[82]  H. Robbins,et al.  A Class of Stopping Rules for Testing Parametric Hypotheses , 1985 .

[83]  J. Andel Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.

[84]  A. Shiryaev On Optimum Methods in Quickest Detection Problems , 1963 .