Vestibular blueprint in early vertebrates

Central vestibular neurons form identifiable subgroups within the boundaries of classically outlined octavolateral nuclei in primitive vertebrates that are distinct from those processing lateral line, electrosensory, and auditory signals. Each vestibular subgroup exhibits a particular morpho-physiological property that receives origin-specific sensory inputs from semicircular canal and otolith organs. Behaviorally characterized phenotypes send discrete axonal projections to extraocular, spinal, and cerebellar targets including other ipsi- and contralateral vestibular nuclei. The anatomical locations of vestibuloocular and vestibulospinal neurons correlate with genetically defined hindbrain compartments that are well conserved throughout vertebrate evolution though some variability exists in fossil and extant vertebrate species. The different vestibular subgroups exhibit a robust sensorimotor signal processing complemented with a high degree of vestibular and visual adaptive plasticity.

[1]  K. Peusner,et al.  Horseradish peroxidase labeling of the efferent and afferent pathways of the avian tangential vestibular nucleus , 1990, The Journal of comparative neurology.

[2]  Le-Qing Wu,et al.  Neural Correlates of a Magnetic Sense , 2012, Science.

[3]  J. Dichgans,et al.  Visual input improves the speedometer function of the vestibular nuclei in the goldfish , 1973, Experimental Brain Research.

[4]  R. Baker,et al.  From Genes to Behavior in the Vestibular System , 1998, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[5]  J. Jansen,et al.  Pre‐ and postmetamorphic organization of the vestibular nuclear complex in the turbot examined by retrograde tracer substances , 1996, The Journal of comparative neurology.

[6]  L. Puelles,et al.  The relationship between rhombomeres and vestibular neuron populations as assessed in quail-chicken chimeras. , 1998, Developmental biology.

[7]  R. Northcutt,et al.  Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. , 2011, Nature communications.

[8]  Florian Engert,et al.  The Tangential Nucleus Controls a Gravito-inertial Vestibulo-ocular Reflex , 2012, Current Biology.

[9]  S. Tomchik,et al.  Octavolateral projections and organization in the medulla of a teleost fish, the sleeper goby (Dormitator latifrons) , 2005, The Journal of comparative neurology.

[10]  Collectif Encyclopedia of Fish Physiology : From Genome to Environment , 2011 .

[11]  E. Stellwag,et al.  Spatio-temporal patterns of Hox paralog group 3-6 gene expression during Japanese medaka (Oryzias latipes) embryonic development. , 2010, Gene expression patterns : GEP.

[12]  R. Baker,et al.  Discharge characteristics of medial rectus and abducens motoneurons in the goldfish. , 1991, Journal of neurophysiology.

[13]  H. Straka,et al.  Plane-specific brainstem commissural inhibition in frog second-order semicircular canal neurons , 2001, Experimental Brain Research.

[14]  R. Anadón,et al.  Secondary vestibulo‐oculomotor projections in larval sea lamprey: Anterior octavomotor nucleus , 1996, The Journal of comparative neurology.

[15]  Otolith End Organ Projections to Auditory Neurons in the Descending Octaval Nucleus of the Goldfish, Carassius auratus: A Confocal Analysis , 2012, Brain, Behavior and Evolution.

[16]  J. Glover The organization of vestibulo-ocular and vestibulospinal projections in the chicken embryo. , 1994, European journal of morphology.

[17]  Comparative view of the central organization of afferent and efferent circuitry for the inner ear. , 1988, Acta biologica Hungarica.

[18]  R. Llinás,et al.  Cerebellar modulatory action on the vestibulo-trochlear pathway in the cat , 2004, Experimental Brain Research.

[19]  R. Baker,et al.  The frog as a unique vertebrate model for studying the rhombomeric organization of functionally identified hindbrain neurons , 2002, Brain Research Bulletin.

[20]  C A McCormick,et al.  Connections of octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. , 1996, Brain, behavior and evolution.

[21]  I Fariñas,et al.  Development and evolution of inner ear sensory epithelia and their innervation. , 2002, Journal of neurobiology.

[22]  Bernd Fritzsch,et al.  Evolution of the Vestibulo-Ocular System , 1998, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  W. Graf,et al.  Central pathways mediating oculomotor reflexes in an elasmobranch, Scyliorhinus canicula. , 2002, The Biological Bulletin.

[24]  Precerebellar hindbrain neurons encoding eye velocity during vestibular and optokinetic behavior in the goldfish. , 2006, Journal of neurophysiology.

[25]  W. Graf,et al.  Vestibuloocular reflex of the adult flatfish. III. A species-specific reciprocal pattern of excitation and inhibition. , 2001, Journal of neurophysiology.

[26]  R. Baker,et al.  Eye position and eye velocity integrators reside in separate brainstem nuclei. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Baker,et al.  Rhombomeric organization of vestibular pathways in larval frogs , 2001, The Journal of comparative neurology.

[28]  W. Graf,et al.  Excitatory and inhibitory vestibular pathways to the extraocular motor nuclei in goldfish. , 1997, Journal of neurophysiology.

[29]  T. Tricas,et al.  Central projections of octavolateralis nerves in the brain of a soniferous damselfish (Abudefduf abdominalis) , 2009, The Journal of comparative neurology.

[30]  R. Baker,et al.  Characterization of Purkinje cells in the goldfish cerebellum during eye movement and adaptive modification of the vestibulo-ocular reflex. , 1997, Progress in brain research.

[31]  W. Graf,et al.  Adaptive changes of the vestibulo-ocular reflex in flatfish are achieved by reorganization of central nervous pathways. , 1983, Science.

[32]  H. Shimazu Organization of the commissural connections: physiology. , 1972, Progress in brain research.

[33]  R. Baker,et al.  Cerebellar role in adaptation of the goldfish vestibuloocular reflex. , 1994, Journal of neurophysiology.

[34]  R. Baker,et al.  Anatomical organization of the brainstem octavolateralis area of the oyster toadfish, Opsanus tau , 1992, The Journal of comparative neurology.

[35]  Comparative view of the central organization of afferent and efferent circuitry for the inner ear. , 1988 .

[36]  J. Glover Neuroepithelial 'compartments' and the specification of vestibular projections. , 2000, Progress in brain research.

[37]  H. Straka,et al.  Differential spatial organization of otolith signals in frog vestibular nuclei. , 2003, Journal of neurophysiology.

[38]  H. Straka Ontogenetic rules and constraints of vestibulo-ocular reflex development , 2010, Current Opinion in Neurobiology.

[39]  R. Baker,et al.  Segmental Organization of Vestibular and Reticular Projections to Spinal and Oculomotor Nuclei in the Zebrafish and Goldfish. , 1996, The Biological bulletin.

[40]  D E Angelaki,et al.  Inertial Processing of Vestibulo‐Ocular Signals , 1999, Annals of the New York Academy of Sciences.

[41]  H. Straka,et al.  Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons. , 2002, Journal of neurophysiology.

[42]  Robert Baker,et al.  Morphology and physiology of the cerebellar vestibulolateral lobe pathways linked to oculomotor function in the goldfish. , 2006, Journal of neurophysiology.

[43]  Christian A. Rössert,et al.  Functional Organization of Vestibular Commissural Connections in Frog , 2010, The Journal of Neuroscience.

[44]  W. Graf,et al.  The vestibuloocular reflex of the adult flatfish. II. Vestibulooculomotor connectivity. , 1985, Journal of neurophysiology.

[45]  C. A. Mccormick Central connection of the octavolateralis nerves in the pike cichlid, Crenicichla lepidota , 1983, Brain Research.

[46]  M. Yamamoto,et al.  Specific neural connections for the cerebellar control of vestibulo-ocular reflexes. , 1973, Brain Research.

[47]  J. Glover,et al.  Comparative aspects of the hodological organization of the vestibular nuclear complex and related neuron populations , 2002, Brain Research Bulletin.

[48]  W. Graf,et al.  The vestibuloocular reflex of the adult flatfish. I. Oculomotor organization. , 1985, Journal of neurophysiology.

[49]  R. Baker,et al.  Otolith Ocular Reflex Function of the Tangential Nucleus in Teleost Fish , 1999, Annals of the New York Academy of Sciences.

[50]  C. Burress,et al.  Stimulus dependence of the development of the zebrafish (Danio rerio) vestibular system. , 1999, Journal of neurobiology.

[51]  R. Baker,et al.  Encoding of eye position in the goldfish horizontal oculomotor neural integrator. , 2011, Journal of neurophysiology.

[52]  S. Vaage The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. , 1969, Ergebnisse der Anatomie und Entwicklungsgeschichte.

[53]  R. Baker,et al.  Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. , 1993, Acta anatomica.

[54]  D. Tank,et al.  Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. , 2004, Journal of neurophysiology.

[55]  N. Dieringer,et al.  Basic organization principles of the VOR: lessons from frogs , 2004, Progress in Neurobiology.

[56]  R. Baker,et al.  Evolutionary Patterns of Cranial Nerve Efferent Nuclei in Vertebrates , 2005, Brain, Behavior and Evolution.

[57]  S. Wise,et al.  The Acquisition of Motor Behavior in Vertebrates , 1996 .

[58]  C. A. Mccormick,et al.  Organization of inner ear endorgan projections in the goldfish, Carassius auratus. , 1994, Brain, behavior and evolution.

[59]  W. Graf,et al.  Neuronal adaptation accompanying metamorphosis in the flatfish. , 1990, Journal of neurobiology.