Calcium isotope record of Phanerozoic oceans: Implications for chemical evolution of seawater and its causative mechanisms

[1]  D. DePaolo,et al.  Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The Ca2+(aq)–calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments , 2007 .

[2]  J. Veizer,et al.  Evolution of the oceanic calcium cycle during the late Mesozoic: Evidence from δ44/40Ca of marine skeletal carbonates , 2007 .

[3]  D. DePaolo,et al.  Stable Ca, H and O Isotopes in the Modern Death Valley Hydrological System, California , 2006 .

[4]  T. Steuber,et al.  Calcium-isotope fractionation in selected modern and ancient marine carbonates , 2006 .

[5]  M. Joachimski,et al.  Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite , 2006 .

[6]  A. Paytan,et al.  Calcium isotope fractionation in modern scleractinian corals , 2006 .

[7]  C. Glenn,et al.  Evolution of Tethyan phosphogenesis along the northern edges of the Arabian–African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation , 2006 .

[8]  G. Wefer,et al.  Cellular calcium pathways and isotope fractionation in Emiliania huxleyi , 2006 .

[9]  M. Bickle,et al.  Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle , 2006 .

[10]  T. M. Hensley Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications to Late Miocene Mediterranean Brine Chemistry and Late Cenozoic Calcium Cycling in the Oceans , 2006 .

[11]  M. Eriksson,et al.  A latest Llandovery to latest Ludlow high-resolution biostratigraphy based on the Silurian of Gotland—a summary , 2006 .

[12]  Mike Guidry,et al.  MAGic: A Phanerozoic Model for the Geochemical Cycling of Major Rock-Forming Components , 2006 .

[13]  M. Dietzel,et al.  Calcium isotope fractionation in calcite and aragonite , 2005 .

[14]  D. DePaolo,et al.  Variations in the marine Ca cycle over the past 20 million years , 2005 .

[15]  T. Steuber,et al.  Evolution of the Mg/Ca ratio of Cretaceous seawater: Implications from the composition of biological low-Mg calcite , 2005 .

[16]  Andy Ridgwell,et al.  The role of the global carbonate cycle in the regulation and evolution of the Earth system , 2005 .

[17]  H. Westphal,et al.  Variations in primary aragonite, calcite, and clay in fine-grained calcareous rhythmites of Cambrian to Jurassic age— an environmental archive? , 2005 .

[18]  P. Vitousek,et al.  Ca cycling and isotopic fluxes in forested ecosystems in Hawaii , 2005 .

[19]  A. Lerman,et al.  A model of Phanerozoic cycles of carbon and calcium in the global ocean: Evaluation and constraints on ocean chemistry and input fluxes , 2005 .

[20]  B. Haq,et al.  Phanerozoic cycles of sea-level change on the Arabian Platform , 2005, GeoArabia.

[21]  H. D. Holland Sea level, sediments and the composition of seawater , 2005 .

[22]  P. Pearson,et al.  Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change , 2005 .

[23]  T. Steuber,et al.  A critical assessment of mollusk 18 O/16 O, Mg/Ca, and 44 Ca/40 Ca ratios as proxies for Cretaceous seawater temperature seasonality , 2005 .

[24]  A. Gale,et al.  Midlatitude shelf seas in the Cenomanian‐Turonian greenhouse world: Temperature evolution and North Atlantic circulation , 2004 .

[25]  G. Wasserburg,et al.  Rate-controlled calcium isotope fractionation in synthetic calcite , 2004 .

[26]  G. Haug,et al.  Reconstruction of Caribbean Sea surface temperature and salinity fluctuations in response to the Pliocene closure of the Central American Gateway and radiative forcing, using δ44/40Ca, δ18O and Mg/Ca ratios , 2004 .

[27]  J. Ries Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: A record of the oceanic Mg/Ca ratio over the Phanerozoic , 2004 .

[28]  A. Tomašových,et al.  Postmortem Durability and Population Dynamics Affecting the Fidelity of Brachiopod Size-Frequency Distributions , 2004 .

[29]  R. Zeebe,et al.  History of carbonate ion concentration over the last 100 million years , 2004 .

[30]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[31]  K. Wallmann Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine δ18O record , 2004 .

[32]  R. Berner A model for calcium, magnesium and sulfate in seawater over Phanerozoic time , 2004 .

[33]  C. Glenn,et al.  44Ca/42Ca and 143Nd/144Nd isotope variations in Cretaceous–Eocene Tethyan francolites and their bearing on phosphogenesis in the southern Tethys , 2004 .

[34]  Peter Stille,et al.  Proposal for International Agreement on Ca Notation Resulting from Discussions at Workshops on Stable Isotope Measurements Held in Davos (Goldschmidt 2002) and Nice (EGS‐AGU‐EUG 2003) , 2004 .

[35]  H. Strauss,et al.  The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates , 2004 .

[36]  R. V. Demicco,et al.  Secular variation in seawater chemistry and the origin of calcium chloride basinal brines , 2003 .

[37]  P. Stille,et al.  Variations of the 44Ca/40Ca ratio in seawater during the past 24 million years: evidence from δ44Ca and δ18O values of Miocene phosphates , 2003 .

[38]  P. Stille,et al.  The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance , 2003 .

[39]  M. Dietzel,et al.  Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera , 2003 .

[40]  Peter Stille,et al.  Calcium isotopic composition of various reference materials and seawater , 2003 .

[41]  K. Wallmann,et al.  Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: A model perspective , 2003 .

[42]  T. Steuber,et al.  Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation , 2002 .

[43]  J. Dickson Fossil Echinoderms As Monitor of the Mg/Ca Ratio of Phanerozoic Oceans , 2002, Science.

[44]  J. Horita,et al.  Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites , 2002 .

[45]  A. Eisenhauer,et al.  Measurement of calcium isotopes () using a multicollector TIMS technique , 2002 .

[46]  G. Eberli,et al.  Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas , 2002 .

[47]  P. Stille,et al.  The Calcium Isotope Composition of Modern Seawater Determined by Thermal Ionisation Mass Spectrometry , 2001 .

[48]  R. V. Demicco,et al.  Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid Inclusions , 2001, Science.

[49]  K. Wallmann Controls on the cretaceous and cenozoic evolution of seawater composition, atmospheric CO2 and climate , 2001 .

[50]  T. Bickert,et al.  Shell succession, assemblage and species dependent effects on the C/O-isotopic composition of brachiopods — examples from the Silurian of Gotland , 2001 .

[51]  T. Bickert,et al.  Development of facies and C/O-isotopes in transects through the Ludlow of Gotland: Evidence for global and local influences on a shallow-marine environment , 2000 .

[52]  H. Zimmermann Tertiary seawater chemistry; implications from primary fluid inclusions in marine halite , 2000 .

[53]  C. Hemleben,et al.  The δ44Ca‐temperature calibration on fossil and cultured Globigerinoides sacculifer: New tool for reconstruction of past sea surface temperatures , 2000 .

[54]  C. L. De La Rocha,et al.  Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. , 2000, Science.

[55]  H. D. Holland,et al.  The Dolomite Problem Revisited1 , 2000 .

[56]  H. Strauss,et al.  87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater , 1999 .

[57]  S. Stanley,et al.  Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry , 1998 .

[58]  J. Macdougall,et al.  Calcium isotopes in the marine environment and the oceanic calcium cycle , 1998 .

[59]  D. DePaolo,et al.  Biological control of calcium isotopic abundances in the global calcium cycle , 1997 .

[60]  L. Hardie Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. , 1996 .

[61]  M. McCulloch,et al.  Petrogenetic applications of the 40K40Ca radiogenic decay scheme — A reconnaissance study , 1989 .

[62]  B. Haq,et al.  Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.

[63]  M. Bender,et al.  Tracers in the Sea , 1984 .

[64]  P. Sandberg,et al.  An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy , 1983, Nature.

[65]  Robert J Collier,et al.  Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data , 1979 .

[66]  T. Tombrello,et al.  Ca isotope fractionation on the Earth and other solar system materials , 1978 .

[67]  P. Sandberg New interpretations of Great Salt Lake ooids and of ancient non‐skeletal carbonate mineralogy , 1975 .

[68]  Robert A. Berner,et al.  The role of magnesium in the crystal growth of calcite and aragonite from sea water , 1975 .

[69]  A. Kampschultea,et al.  The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates , 2007 .

[70]  K. Lackschewitz,et al.  Calcium isotope variations along the hydrothermal pathway , 2006 .

[71]  F. Mackenzie,et al.  The control of Phanerozoic atmosphere and seawater composition by basalt–seawater exchange reactions , 2006 .

[72]  P. Pearson,et al.  Calcium isotope (DCa) variations of Neogene planktonic foraminifera , 2005 .

[73]  W. Kiessling,et al.  Calcium isotope fractionation during dolomitization , 2005 .

[74]  T. Elliott,et al.  Ca isotope fingerprints of early crust-mantle evolution , 2005 .

[75]  G. Langer Calcification of selected coccolithophore species: strontium partitioning, calcium isotope fractionation, and dependence on seawater carbonate chemistry , 2005 .

[76]  D. DePaolo Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes , 2004 .

[77]  Morton K. Blaustein Effect of ambient Mg / Ca ratio on Mg fractionation in calcareous marine invertebrates : A record of the oceanic Mg / Ca ratio over the Phanerozoic , 2004 .

[78]  F. Albarède,et al.  Geochemistry of non-traditional stable isotopes , 2004 .

[79]  M. Dietzel,et al.  Fractionation of 44Ca/40Ca between aragonite and calcite. , 2002 .

[80]  W. Kiessling Secular Variations in the Phanerozoic Reef Ecosystem , 2002 .

[81]  A. Eisenhauer,et al.  delta(44) Ca in N. pachy (left): a new SST-proxy in polar regions , 2002 .

[82]  J. Morse,et al.  Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater , 1997 .

[83]  D. Teagle,et al.  Ridge flank alteration of upper ocean crust in the Eastern Pacific : Synthesis of results for volcanic rocks of Holes 504B and 896A , 1996 .

[84]  D. Teagle Alteration of upper oceanic crust in a ridge-flank hydrothermal upflow zone : mineral, chemical, and isotopic constraints from Hole 896A , 1996 .

[85]  T. Anderson,et al.  Stable Isotopes of Oxygen and Carbon and their Application to Sedimentologic and Paleoenvironmental Problems , 1983 .

[86]  F. Mackenzie,et al.  Evolution of sedimentary rocks , 1971 .