HOST‐SPECIALIST LINEAGES DOMINATE THE ADAPTIVE RADIATION OF REEF CORAL ENDOSYMBIONTS

Bursts in species diversification are well documented among animals and plants, yet few studies have assessed recent adaptive radiations of eukaryotic microbes. Consequently, we examined the radiation of the most ecologically dominant group of endosymbiotic dinoflagellates found in reef‐building corals, Symbiodinium Clade C, using nuclear ribosomal (ITS2), chloroplast (psbAncr), and multilocus microsatellite genotyping. Through a hierarchical analysis of high‐resolution genetic data, we assessed whether ecologically distinct Symbiodinium, differentiated by seemingly equivocal rDNA sequence differences, are independent species lineages. We also considered the role of host specificity in Symbiodinium speciation and the correspondence between endosymbiont diversification and Caribbean paleo‐history. According to phylogenetic, biological, and ecological species concepts, Symbiodinium Clade C comprises many distinct species. Although regional factors contributed to population‐genetic structuring of these lineages, Symbiodinium diversification was mainly driven by host specialization. By combining patterns of the endosymbiont's host specificity, water depth distribution, and phylogeography with paleo‐historical signals of climate change, we inferred that present‐day species diversity on Atlantic coral reefs stemmed mostly from a post‐Miocene adaptive radiation. Host‐generalist progenitors spread, specialized, and diversified during the ensuing epochs of prolonged global cooling and change in reef‐faunal assemblages. Our evolutionary reconstruction thus suggests that Symbiodinium undergoes “boom and bust” phases in diversification and extinction during major climate shifts.

[1]  R. Glor Phylogenetic Insights on Adaptive Radiation , 2010 .

[2]  B. Willis,et al.  Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress , 2008, Proceedings of the Royal Society B: Biological Sciences.

[3]  J. Pinzón Phylogenetics, population genetics and ecology to understand the evolution of coral-algal mutualisms , 2011 .

[4]  O. Hoegh‐Guldberg,et al.  Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. , 2003, International journal of systematic and evolutionary microbiology.

[5]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[6]  Mauro Magnani,et al.  Development of a Real-Time PCR Assay for Rapid Detection and Quantification of Alexandrium minutum (a Dinoflagellate) , 2004, Applied and Environmental Microbiology.

[7]  A. Correa,et al.  Understanding diversity in coral-algal symbiosis: a cluster-based approach to interpreting fine-scale genetic variation in the genus Symbiodinium , 2009, Coral Reefs.

[8]  J. Wiedenmann,et al.  Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. , 2013, Marine pollution bulletin.

[9]  G. Dover Molecular drive in multigene families: How biological novelties arise, spread and are assimilated , 1986 .

[10]  L. Muscatine,et al.  Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration1 , 1981 .

[11]  Rainer Zahn,et al.  Role of Panama uplift on oceanic freshwater balance , 2001 .

[12]  T. Lajeunesse,et al.  Genotypic diversity and spatial–temporal distribution of Symbiodinium clones in an abundant reef coral , 2011, Molecular ecology.

[13]  G. P. Smith,et al.  Evolution of repeated DNA sequences by unequal crossover. , 1976, Science.

[14]  Todd C. LaJeunesse,et al.  Long‐standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium , 2010 .

[15]  G. Vasta,et al.  Characterization of the rRNA Locus of Pfiesteria piscicida and Development of Standard and Quantitative PCR-Based Detection Assays Targeted to the Nontranscribed Spacer , 2002, Applied and Environmental Microbiology.

[16]  T. Lajeunesse "Species" radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. , 2005, Molecular biology and evolution.

[17]  Ole Seehausen,et al.  African cichlid fish: a model system in adaptive radiation research , 2006, Proceedings of the Royal Society B: Biological Sciences.

[18]  J. W. Valentine,et al.  Fossils, molecules and embryos: new perspectives on the Cambrian explosion. , 1999, Development.

[19]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[20]  M. Donoghue A Critique of the Biological Species Concept and Recommendations for a Phylogenetic Alternative , 1985 .

[21]  D. Schluter,et al.  Evidence for Ecological Speciation and Its Alternative , 2022 .

[22]  F. Cohan,et al.  Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. , 1997, International journal of systematic bacteriology.

[23]  D. Thornhill,et al.  Improved Resolution of Reef-Coral Endosymbiont (Symbiodinium) Species Diversity, Ecology, and Evolution through psbA Non-Coding Region Genotyping , 2011, PloS one.

[24]  J. Losos,et al.  Adaptive Radiation: Contrasting Theory with Data , 2009, Science.

[25]  Jaa Nylander,et al.  MrModeltest 2.2. Program Distributed by the Author , 2004 .

[26]  Jonathan B. Losos,et al.  Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles , 2009 .

[27]  W. Fitt,et al.  Reef Endemism, Host Specificity and Temporal Stability in Populations of Symbiotic Dinoflagellates from Two Ecologically Dominant Caribbean Corals , 2009, PloS one.

[28]  Tanja Gernhard New Analytic Results for Speciation Times in Neutral Models , 2008, Bulletin of mathematical biology.

[29]  Todd C. LaJeunesse,et al.  Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs , 2002 .

[30]  B. Willis,et al.  High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium , 2009, Coral Reefs.

[31]  G. Schmidt,et al.  High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii , 2004, Coral Reefs.

[32]  J. Dvorak,et al.  Chloroplast DNA evidence for a North American origin of the Hawaiian silversword alliance (Asteraceae). , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Chollett Ordaz,et al.  Environmental regimes in the Caribbean and implications for the dynamics and distribution of its coral reefs , 2011 .

[34]  D. Schluter Ecology and the origin of species. , 2001, Trends in ecology & evolution.

[35]  R. Berkelmans,et al.  A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization , 2008, Proceedings of the Royal Society B: Biological Sciences.

[36]  M. Oppen,et al.  Isolation, characterisation and cross amplification of thirteen microsatellite loci for coral endo-symbiotic dinoflagellates (Symbiodinium clade C) , 2009, Conservation Genetics Resources.

[37]  Hill Malcolm,et al.  The magnesium inhibition and arrested phagosome hypotheses: new perspectives on the evolution and ecology of Symbiodinium symbioses , 2012, Biological reviews of the Cambridge Philosophical Society.

[38]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[39]  D. Barnes,et al.  Calcification and photosynthesis in reef-building corals and algae , 1990 .

[40]  T. Lajeunesse,et al.  Microsatellite loci for the host-generalist “zooxanthella” Symbiodinium trenchi and other Clade D Symbiodinium , 2011, Conservation Genetics Resources.

[41]  P. Pearson,et al.  Atmospheric carbon dioxide concentrations over the past 60 million years , 2000, Nature.

[42]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[43]  E. Sampayo,et al.  Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium , 2009, Molecular ecology.

[44]  U. Dieckmann,et al.  On the origin of species by sympatric speciation , 1999, Nature.

[45]  D. Powers,et al.  A Molecular Genetic Classification of Zooxanthellae and the Evolution of Animal-Algal Symbioses , 1991, Science.

[46]  O. Hoegh‐Guldberg,et al.  Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean , 2003 .

[47]  R. Ricklefs,et al.  Adaptation and diversification on islands , 2009, Nature.

[48]  J. A. Wolfe A Paleobotanical Interpretation of Tertiary Climates in the Northern Hemisphere , 1978 .

[49]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[50]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[51]  W. Stam,et al.  Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling , 2007, Coral Reefs.

[52]  Gerald H. Haug,et al.  Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation , 1998, Nature.

[53]  J. Reimer,et al.  A genetics‐based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria , 2012, Journal of phycology.

[54]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[55]  S. R. Santos,et al.  Marine Biological Laboratory Molecular Genetic Evidence that Dinoflagellates Belonging to the Genus Symbiodinium Freudenthal Are Haploid , 2022 .

[56]  J. Jackson,et al.  Life in the last few million years , 2000, Paleobiology.

[57]  A. Correa,et al.  Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia , 2011 .

[58]  T. Goulet,et al.  Stability of an octocoral-algal symbiosis over time and space , 2003 .

[59]  A. Barbrook,et al.  Molecular diversity of dinoflagellate symbionts of Cnidaria: the psbA minicircle of Symbiodinium. , 2006, Protist.

[60]  C. Janis Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events , 1993 .

[61]  E. Sampayo,et al.  The Relative Significance of Host–Habitat, Depth, and Geography on the Ecology, Endemism, and Speciation of Coral Endosymbionts in the Genus Symbiodinium , 2010, Microbial Ecology.

[62]  J. Andras,et al.  Range‐wide population genetic structure of Symbiodinium associated with the Caribbean Sea fan coral, Gorgonia ventalina , 2011, Molecular ecology.

[63]  W. Chaisson,et al.  Pliocene development of the east‐west hydrographic gradient in the equatorial Pacific , 2000 .

[64]  Margaux Carmichael,et al.  Microsatellite loci for Symbiodinium goreaui and other Clade C Symbiodinium , 2014, Conservation Genetics Resources.

[65]  S. R. Santos,et al.  Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins , 2013, Molecular ecology.

[66]  P. K. Weyl The Role of the Oceans in Climatic Change: A Theory of the Ice Ages , 1968 .

[67]  Martijn Gough Climate change , 2009, Canadian Medical Association Journal.

[68]  B. Willis,et al.  Coral thermal tolerance shaped by local adaptation of photosymbionts , 2012 .

[69]  G. Schmidt,et al.  Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion , 2006 .

[70]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[71]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[72]  A. Budd Diversity and extinction in the Cenozoic history of Caribbean reefs , 2000, Coral Reefs.

[73]  B. Haq,et al.  Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.

[74]  M. Hellberg,et al.  Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata , 2005, Molecular ecology.

[75]  B. Schmitz,et al.  Global dinoflagellate event associated with the late Paleocene thermal maximum , 2001 .

[76]  Todd C. LaJeunesse,et al.  Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event , 2009, Proceedings of the Royal Society B: Biological Sciences.

[77]  B. Buchardt Oxygen isotope palaeotemperatures from the Tertiary period in the North Sea area , 1978, Nature.

[78]  J. Jackson,et al.  COMMUNITY STRUCTURE OF PLEISTOCENE CORAL REEFS OF CURACAO, NETHERLANDS ANTILLES , 2001 .

[79]  D. Beerling Low atmospheric CO2 levels during the Permo- Carboniferous glaciation inferred from fossil lycopsids , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  J. Ehleringer,et al.  Global vegetation change through the Miocene/Pliocene boundary , 1997, Nature.

[81]  X. Pochon,et al.  Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. , 2006, Molecular phylogenetics and evolution.

[82]  B. Grant,et al.  How and Why Species Multiply: The Radiation of Darwin's Finches , 2011 .

[83]  X. Pochon,et al.  Identifying and Characterizing Alternative Molecular Markers for the Symbiotic and Free-Living Dinoflagellate Genus Symbiodinium , 2012, PloS one.

[84]  R. Iglesias-Prieto,et al.  Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol , 2010, Coral Reefs.

[85]  Michael S. Taylor,et al.  Genetic Evidence for Local Retention of Pelagic Larvae in a Caribbean Reef Fish , 2003, Science.

[86]  M. Raymo,et al.  Northern Hemisphere climate regimes during the past 3 Ma: possible tectonic connections , 1988 .

[87]  Claire B Paris-Limouzy,et al.  Scaling of Connectivity in Marine Populations , 2006, Science.

[88]  J. Wakeley Coalescent Theory: An Introduction , 2008 .

[89]  S. R. Santos,et al.  Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. , 2005, Protist.

[90]  T. Lajeunesse INVESTIGATING THE BIODIVERSITY, ECOLOGY, AND PHYLOGENY OF ENDOSYMBIOTIC DINOFLAGELLATES IN THE GENUS SYMBIODINIUM USING THE ITS REGION: IN SEARCH OF A “SPECIES” LEVEL MARKER , 2001 .

[91]  Campbell O. Webb,et al.  Niche evolution and adaptive radiation: testing the order of trait divergence. , 2006, Ecology.

[92]  B. Hausdorf PROGRESS TOWARD A GENERAL SPECIES CONCEPT , 2011, Evolution; international journal of organic evolution.

[93]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[94]  S. R. Santos,et al.  Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates , 2007, Molecular ecology.

[95]  Ray Berkelmans,et al.  The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change , 2006, Proceedings of the Royal Society B: Biological Sciences.

[96]  S. R. Santos,et al.  Fine‐scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium, Dinophyceae) of the Caribbean , 2004, Molecular ecology.

[97]  K. de Queiroz,et al.  Species concepts and species delimitation. , 2007, Systematic biology.