Denotational semantics of hybrid automata

Abstract We introduce a denotational semantics for non-linear hybrid automata and relate it to the operational semantics given in terms of hybrid trajectories. The semantics is defined as least fixpoint of an operator on the continuous domain of functions of time that take values in the lattice of compact subsets of n -dimensional Euclidean space. The semantic function assigns to every point in time the set of states the automaton can visit at that time, starting from one of its initial states. Our main results are the correctness and computational adequacy of the denotational semantics with respect to the operational semantics given in terms of hybrid trajectories. Moreover, we show that our denotational semantics can be effectively computed, which allows for the effective analysis of a large class of non-linear hybrid automata.

[1]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[2]  Abbas Edalat,et al.  Domain Theoretic Solutions of Initial Value Problems for Unbounded Vector Fields , 2006, MFPS.

[3]  Thomas A. Henzinger,et al.  Automatic Symbolic Verification of Embedded Systems , 1996, IEEE Trans. Software Eng..

[4]  Abbas Edalat,et al.  Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..

[5]  Thomas Stauner,et al.  Modelling and Verification using Linear Hybrid Automata -- a Case Study , 2000 .

[6]  Abbas Edalat,et al.  A Domain Theoretic Account of Euler's Method for Solving Initial Value Problems , 2004, PARA.

[7]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[8]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[9]  Abbas Edalat,et al.  Domain-theoretic Solution of Differential Equations (Scalar Fields) , 2003, MFPS.

[10]  Karl Henrik Johansson,et al.  Towards a Geometric Theory of Hybrid Systems , 2000, HSCC.

[11]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[12]  Abbas Edalat,et al.  A Domain Theoretic Account of Picard's Theorem , 2004, ICALP.

[13]  John Lygeros,et al.  Verified hybrid controllers for automated vehicles , 1998, IEEE Trans. Autom. Control..

[14]  Pravin Varaiya,et al.  Smart cars on smart roads: problems of control , 1991, IEEE Trans. Autom. Control..

[15]  T. Henzinger The theory of hybrid automata , 1996, LICS 1996.

[16]  J. Czipszer,et al.  Extension of functions satisfying a Lipschitz condition , 1955 .

[17]  Abbas Edalat,et al.  Power Domains and Iterated Function Systems , 1996, Inf. Comput..

[18]  T. Henzinger,et al.  Algorithmic Analysis of Nonlinear Hybrid Systems , 1998, CAV.

[19]  Abbas Edalat,et al.  Domain theory and differential calculus (functions of one variable) , 2004, Math. Struct. Comput. Sci..

[20]  Thomas A. Henzinger,et al.  Beyond HYTECH: Hybrid Systems Analysis Using Interval Numerical Methods , 2000, HSCC.

[21]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[22]  Thomas A. Henzinger,et al.  HYTECH: A Model Checker for Hybrid Systems , 1997, CAV.

[23]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[24]  Klaus Keimel,et al.  The way-below relation of function spaces over semantic domains , 1998 .

[25]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .