Abstract Euler Diagram Isomorphism

Euler diagrams are widely used for information visualization and form the basis of a variety of formal languages that are used to express constraints in computing. Tools to automatically generate and layout these diagrams from an abstract description have to overcome the fact that this problem is computationally difficult. We develop a theory of isomorphism of diagram descriptions and identify invariants of these descriptions under isomorphism. We can apply this theory to improve the efficiency of the generation of all abstract descriptions (up to isomorphism). We can also consider the production and use of libraries of diagrams with nice visual properties: by providing a normal form for the abstract descriptions we can improve efficiency of searches for isomorphic diagrams within such libraries and, moreover, utilize invariants for further efficiency savings. We produce an implementation of the theory and give an indication of the efficiency improvements.

[1]  Andrew Fish,et al.  Euler diagram generation , 2008, J. Vis. Lang. Comput..

[2]  Hans A. Kestler,et al.  Generalized Venn diagrams: a new method of visualizing complex genetic set relations , 2005, Bioinform..

[3]  John Howse,et al.  Generating Euler Diagrams , 2002, Diagrams.

[4]  Gerard Allwein,et al.  Using DAG transformations to verify Euler/Venn homogeneous and Euler/Venn FOL heterogeneous rules of inference , 2003, Software & Systems Modeling.

[5]  Vittorio Scarano,et al.  A System for Virtual Directories Using Euler Diagrams , 2005, Electron. Notes Theor. Comput. Sci..

[6]  Gem Stapleton,et al.  Spider Diagrams , 2005, LMS J. Comput. Math..

[7]  John Taylor,et al.  Nesting in Euler Diagrams: syntax, semantics and construction , 2004, Software & Systems Modeling.

[8]  Javier Larrosa,et al.  Constraint satisfaction algorithms for graph pattern matching , 2002, Mathematical Structures in Computer Science.

[9]  Michael A. Harrison,et al.  Introduction to switching and automata theory , 1965 .

[10]  Gerard Allwein,et al.  Heterogeneous Reasoning with Euler/Venn Diagrams Containing Named Constants and FOL , 2005, Euler.

[11]  Christine Solnon,et al.  A Global Constraint for Graph Isomorphism Problems , 2004, CPAIOR.

[12]  Stuart Kent,et al.  Constraint diagrams: visualizing invariants in object-oriented models , 1997, OOPSLA '97.

[13]  Eugene M. Luks,et al.  Hypergraph isomorphism and structural equivalence of Boolean functions , 1999, STOC '99.

[14]  Judith Masthoff,et al.  Automated Theorem Proving in Euler Diagram Systems , 2007, Journal of Automated Reasoning.

[15]  Thomas Reichherzer,et al.  Collaborative knowledge capture in ontologies , 2005, K-CAP '05.

[16]  David A. Carrington,et al.  Visualization of formal specifications , 1999, Proceedings Sixth Asia Pacific Software Engineering Conference (ASPEC'99) (Cat. No.PR00509).

[17]  Anne Verroust-Blondet,et al.  Using Euler Diagrams in Traditional Library Environments , 2005, Electron. Notes Theor. Comput. Sci..

[18]  Frank Ruskey,et al.  Drawing Area-Proportional Venn and Euler Diagrams , 2003, GD.

[19]  Frank Ruskey,et al.  Towards a General Solution to Drawing Area-Proportional Euler Diagrams , 2005, Electron. Notes Theor. Comput. Sci..

[20]  John Howse,et al.  Precise visual modeling: A case-study , 2004, Software & Systems Modeling.

[21]  Gary Chartrand,et al.  Applied and algorithmic graph theory , 1992 .

[22]  Gem Stapleton,et al.  The Expressiveness of Spider Diagrams , 2004, J. Log. Comput..