The multireference coupled‐cluster method in Hilbert space: An incomplete model space application to the LiH molecule

The first results from a Hilbert space, multireference coupled‐cluster (CC) method in an incomplete model (active) space are reported for the five lowest states of LiH. The active space is spanned by several configurations at the level of single and double excitations, where the configuration(s) causing intruder state problems are excluded from the complete Hilbert reference space. Full inclusion of single‐ and double‐excitation operators is considered in the expansion for the cluster operator, with all quadratic terms in the renormalization part. The multireference CC results for the ground (X 1Σ+) and four low‐lying excited states (a 3Σ+, A 1Σ+, a 3Π, A 1Π ) of LiH are compared with the corresponding full configuration‐interaction (FCI) energies. The agreement between FCI and CC values within a few hundredths of mH for the Π states proves the feasibility of the present method to describe, quantitatively, the quasicomplete reference space problem. Deviations of the incomplete multireference results from ...

[1]  R. Bartlett,et al.  A study of the Be2 potential curve using the full (CCSDT) coupled‐cluster method: The importance of T4 clusters , 1988 .

[2]  U. Kaldor,et al.  Many-Body Methods in Quantum Chemistry , 1989 .

[3]  K. Freed,et al.  Comparison of complete model space quasidegenerate many-body perturbation theory for LiH with multireference coupled cluster method , 1989 .

[4]  Leszek Meissner,et al.  A coupled‐cluster method for quasidegenerate states , 1988 .

[5]  Josef Paldus,et al.  Spin‐adapted multireference coupled‐cluster approach: Linear approximation for two closed‐shell‐type reference configurations , 1988 .

[6]  R. Bartlett,et al.  The coupled‐cluster single, double, and triple excitation model for open‐shell single reference functions , 1990 .

[7]  U. Kaldor,et al.  General-model-space many-body perturbation theory: The (2s3p)/sup 1,3/P states in the Be isoelectronic sequence , 1984 .

[8]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[9]  U. Kaldor,et al.  The open‐shell coupled‐cluster method in general model space: Five states of LiH , 1988 .

[10]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[11]  D. Mukherjee,et al.  Size-extensive effective Hamiltonian formalisms using quasi-Hilbert and quasi-Fock space strategies with incomplete model spaces , 1989 .

[12]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[13]  Stolarczyk,et al.  Coupled-cluster method in Fock space. IV. Calculation of expectation values and transition moments. , 1988, Physical review. A, General physics.

[14]  Mark R. Hoffmann,et al.  A unitary multiconfigurational coupled‐cluster method: Theory and applications , 1988 .

[15]  C. E. Dykstra,et al.  The effects of basis set selection on the vibrational transition frequencies obtained from SCF and correlated wave functions for an uncomplicated molecule, LiH , 1986 .

[16]  I. Lindgren A Note on the Linked-Diagram and Coupled-Cluster Expansions for Complete and Incomplete Model Spaces , 1985 .

[17]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[18]  P. Wormer,et al.  Coupled-pair theories and Davidson-type corrections for quasidegenerate states: the H4 model revisited , 1988 .

[19]  R. Bartlett,et al.  A study of Be2 with many‐body perturbation theory and a coupled‐cluster method including triple excitations , 1984 .

[20]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[21]  R. Bartlett,et al.  Coupled-cluster methods that include connected quadruple excitations, T4: CCSDTQ-1 and Q(CCSDT) , 1989 .

[22]  W. Kutzelnigg,et al.  Connected‐diagram expansions of effective Hamiltonians in incomplete model spaces. I. Quasicomplete and isolated incomplete model spaces , 1987 .

[23]  R. Offermann Degenerate many fermion theory in expS form: (II). Comparison with perturbation theory☆ , 1976 .

[24]  Bartlett,et al.  Convergence properties of multireference many-body perturbation theory. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[25]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[26]  R. Bartlett,et al.  A general model-space coupled-cluster method using a Hilbert-space approach , 1990 .

[27]  R. Bartlett,et al.  Multireference coupled‐cluster method: Ionization potentials and excitation energies for ketene and diazomethane , 1989 .

[28]  D. Mukherjee,et al.  A non-perturbative open-shell theory for atomic and molecular systems: Application to transbutadiene , 1975 .

[29]  K. Freed,et al.  Tests of using large valence spaces in quasidegenerate many‐body perturbation theory: Calculations of O2 potential curves , 1984 .

[30]  Werner Kutzelnigg,et al.  Quantum chemistry in Fock space. III. Particle‐hole formalism , 1984 .

[31]  R. Bartlett,et al.  A multireference coupled‐cluster method for special classes of incomplete model spaces , 1989 .

[32]  D. Mukherjee Linked-cluster theorem in open shell coupled-cluster theory for mp-mh model space determinants , 1986 .

[33]  W. Kutzelnigg,et al.  Connected‐diagram expansions of effective Hamiltonians in incomplete model spaces. II. The general incomplete model space , 1987 .

[34]  C. Bloch,et al.  Sur la théorie des perturbations des états liés , 1958 .

[35]  S. Sander,et al.  Fourier transform infrared spectroscopy of the NO3 nu-2 and nu-3 bands - Absolute line strength measurements , 1987 .