Mechanism of Enhanced Immature Dengue Virus Attachment to Endosomal Membrane Induced by prM Antibody.

Dengue virus (DENV) particles are released from cells in different maturation states. Fully immature DENV (immDENV) is generally non-infectious, but can become infectious when complexed with anti-precursor membrane (prM) protein antibodies. It is unknown how anti-prM antibody-coated particles can undergo membrane fusion since the prM caps the envelope (E) protein fusion loop. Here, we determined cryoelectron microscopy (cryo-EM) maps of the immDENV:anti-prM complex at different pH values, mimicking the extracellular (pH 8.0) or endosomal (pH 5.0) environments. At pH 5.0, there are two structural classes with fewer antibodies bound than at pH 8.0. These classes may represent different maturation states. Molecular simulations, together with the measured high-affinity pr:antibody interaction (versus the weak pr:E interaction) and also the low pH cryo-EM structures, suggest how antibody:pr complex can dislodge from the E protein at low pH. This exposes the E protein fusion loop enhancing virus interaction with endosomes.

[1]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[2]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[3]  John S. Brownstein,et al.  The global distribution and burden of dengue , 2013, Nature.

[4]  M. Kielian,et al.  A stable prefusion intermediate of the alphavirus fusion protein reveals critical features of class II membrane fusion. , 2008, Cell host & microbe.

[5]  Michael J Rust,et al.  Characterization of the Early Events in Dengue Virus Cell Entry by Biochemical Assays and Single-Virus Tracking , 2007, Journal of Virology.

[6]  M. Diamond,et al.  A Fusion-Loop Antibody Enhances the Infectious Properties of Immature Flavivirus Particles , 2011, Journal of Virology.

[7]  J. Crowe,et al.  Dengue Virus prM-Specific Human Monoclonal Antibodies with Virus Replication-Enhancing Properties Recognize a Single Immunodominant Antigenic Site , 2015, Journal of Virology.

[8]  Victor A. Kostyuchenko,et al.  Immature and Mature Dengue Serotype 1 Virus Structures Provide Insight into the Maturation Process , 2013, Journal of Virology.

[9]  S. Harrison,et al.  The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution , 1995, Nature.

[10]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[11]  F. Corpet Multiple sequence alignment with hierarchical clustering. , 1988, Nucleic acids research.

[12]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[13]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[14]  Xavier Robert,et al.  Deciphering key features in protein structures with the new ENDscript server , 2014, Nucleic Acids Res..

[15]  M. Rossmann,et al.  Obstruction of Dengue Virus Maturation by Fab Fragments of the 2H2 Antibody , 2013, Journal of Virology.

[16]  Denise P. I. van de Pol,et al.  Immature Dengue Virus Is Infectious in Human Immature Dendritic Cells via Interaction with the Receptor Molecule DC-SIGN , 2014, PloS one.

[17]  Y. Modis,et al.  A ligand-binding pocket in the dengue virus envelope glycoprotein , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Y. Hamuro,et al.  Expansion of time window for mass spectrometric measurement of amide hydrogen/deuterium exchange reactions. , 2010, Rapid communications in mass spectrometry : RCM.

[19]  M. Liao,et al.  In Vitro Reconstitution Reveals Key Intermediate States of Trimer Formation by the Dengue Virus Membrane Fusion Protein , 2010, Journal of Virology.

[20]  Y. Modis,et al.  Structure of the dengue virus envelope protein after membrane fusion , 2004, Nature.

[21]  Y. Modis,et al.  Variable Surface Epitopes in the Crystal Structure of Dengue Virus Type 3 Envelope Glycoprotein , 2005, Journal of Virology.

[22]  J. Aaskov,et al.  Processing of the dengue virus type 2 proteins prM and C-prM. , 1993, The Journal of general virology.

[23]  A. Wallqvist,et al.  Structure-based pKa prediction provides a thermodynamic basis for the role of histidines in pH-induced conformational transitions in dengue virus , 2015, Biochemistry and biophysics reports.

[24]  M. Kielian,et al.  In Vitro and In Vivo Studies Identify Important Features of Dengue Virus pr-E Protein Interactions , 2010, PLoS pathogens.

[25]  Jürgen Schlitter,et al.  Targeted Molecular Dynamics Simulation of Conformational Change-Application to the T ↔ R Transition in Insulin , 1993 .

[26]  J. Smit,et al.  Immature Dengue Virus: A Veiled Pathogen? , 2010, PLoS pathogens.

[27]  W. Chiu,et al.  Averaging tens to hundreds of icosahedral particle images to resolve protein secondary structure elements using a Multi-Path Simulated Annealing optimization algorithm. , 2007, Journal of structural biology.

[28]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[29]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[30]  J. Crowe,et al.  Persistence of Circulating Memory B Cell Clones with Potential for Dengue Virus Disease Enhancement for Decades following Infection , 2011, Journal of Virology.

[31]  Ying Zhang,et al.  The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation , 2008, Science.

[32]  Prida Malasit,et al.  Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans , 2010, Science.

[33]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[34]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[35]  Ying Zhang,et al.  Structures of immature flavivirus particles , 2003, The EMBO journal.

[36]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[37]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[38]  M. Gross,et al.  Hydrogen–Deuterium Exchange and Mass Spectrometry Reveal the pH-Dependent Conformational Changes of Diphtheria Toxin T Domain , 2014, Biochemistry.

[39]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[40]  M. Rossmann,et al.  Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion , 2009, Journal of Virology.

[41]  S. Lok The Interplay of Dengue Virus Morphological Diversity and Human Antibodies. , 2016, Trends in microbiology.

[42]  A. Pyke,et al.  Single rapid TaqMan fluorogenic probe based PCR assay that detects all four dengue serotypes , 2002, Journal of medical virology.

[43]  Markus R Wenk,et al.  The Stem Region of Premembrane Protein Plays an Important Role in the Virus Surface Protein Rearrangement during Dengue Maturation* , 2012, The Journal of Biological Chemistry.

[44]  Leonardo G. Trabuco,et al.  Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. , 2009, Methods.

[45]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[46]  Chandra Verma,et al.  Pushing the Envelope: Dengue Viral Membrane Coaxed into Shape by Molecular Simulations. , 2016, Structure.

[47]  S. Halstead,et al.  Dengue , 1872, The Lancet.

[48]  Valorie D. Bowman,et al.  Influence of pr-M Cleavage on the Heterogeneity of Extracellular Dengue Virus Particles , 2010, Journal of Virology.

[49]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. LaBaer,et al.  Trichloroacetic acid (TCA) precipitation of proteins. , 2011, Cold Spring Harbor protocols.

[51]  L. Chernomordik,et al.  Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids , 2010, PLoS pathogens.

[52]  Gareth Griffiths,et al.  Lysosomal Enzyme Trafficking between Phagosomes, Endosomes, and Lysosomes in J774 Macrophages , 1998, The Journal of Biological Chemistry.

[53]  H. Klenk,et al.  Sorting of Furin at the Trans-Golgi Network , 1999, The Journal of Biological Chemistry.

[54]  Wei Zhang,et al.  Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation , 2008, Science.

[55]  Jiahui Chen,et al.  Improvements to the APBS biomolecular solvation software suite , 2017, Protein science : a publication of the Protein Society.