Higher order color mechanisms: A critical review

A large number of studies, using a wide variety of experimental techniques, have investigated the "higher-order" color mechanisms proposed by Krauskopf and colleagues in 1986. Results reviewed here come from studies of chromatic discrimination at threshold, habituation, classification images, spatial alignment and orientation effects, and noise masking. The bulk of the evidence has been taken to support the existence of multiple, linear color mechanisms in addition to (or after) the three putative low-level cardinal mechanisms. But there remain disconcerting inconsistencies in the results of noise masking experiments, and the results of chromatic discrimination experiments clearly show that there are a very limited number of labeled-line mechanisms near threshold. No consensus on higher order mechanisms has been reached even after more than 20 years of study.

[1]  LI ANDREA,et al.  Mechanisms Underlying Segmentation of Colored Textures , 1997, Vision Research.

[2]  D. L. Macadam Visual Sensitivities to Color Differences in Daylight , 1942 .

[3]  R. M. Boynton,et al.  Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.

[4]  Michael D'Zmura,et al.  Geometric Representations of Perceptual Phenomena : Papers in Honor of Tarow indow on His 70th Birthday , 1995 .

[5]  Qasim Zaidi,et al.  Visual mechanisms that signal the direction of color changes , 1993, Vision Research.

[6]  Robert M. Boynton,et al.  Chromatic difference steps of moderate size measured along theoretically critical axes , 1980 .

[7]  D. L. Macadam Note on the number of distinct chromaticities. , 1947, Journal of the Optical Society of America.

[8]  Keizo Shinomori,et al.  PII: S0042-6989(97)00460-4 , 1998 .

[9]  K R Gegenfurtner,et al.  Contrast detection in luminance and chromatic noise. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[10]  Michael A. Webster,et al.  Selective tuning of face perception , 2004 .

[11]  Rhea T. Eskew,et al.  Chromatic detection and discrimination analyzed by a Bayesian classifier , 2001, Vision Research.

[12]  M. Webster,et al.  Changes in colour appearance following post-receptoral adaptation , 1991, Nature.

[13]  Karl R Gegenfurtner,et al.  Higher level chromatic mechanisms for image segmentation. , 2006, Journal of vision.

[14]  R. Eskew Chromatic Detection and Discrimination , 2008 .

[15]  K. Mullen,et al.  Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  C. F. STROMEYER,et al.  PII: S0042-6989(97)00231-9 , 2003 .

[17]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[18]  Eugene Switkes Integration of differing chromaticities in early and midlevel spatial vision , 2002 .

[19]  W. Stiles Increment thresholds and the mechanisms of colour vision. , 1949, Documenta ophthalmologica. Advances in ophthalmology.

[20]  Hirohisa Yaguchi,et al.  Psychophysical evidence for a purely binocular color system , 2009, Vision Research.

[21]  R. W. Rodieck The vertebrate retina : principles of structure and function , 1973 .

[22]  R. Eskew The gap effect revisited: Slow changes in chromatic sensitivity as affected by luminance and chromatic borders , 1989, Vision Research.

[23]  J. Kulikowski,et al.  Wavelength discrimination at detection threshold. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[24]  Robert M. Boynton,et al.  A flaw in equations for predicting chromatic differences , 1983 .

[25]  C. Stromeyer,et al.  Colour adaptation modifies the long‐wave versus middle‐wave cone weights and temporal phases in human luminance (but not red‐green) mechanism. , 1997, The Journal of physiology.

[26]  Karl R. Gegenfurtner,et al.  Color Vision: From Genes to Perception , 1999 .

[27]  David Whitaker,et al.  Positional adaptation reveals multiple chromatic mechanisms in human vision. , 2004, Journal of vision.

[28]  K. Dobkins,et al.  Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis , 2003, Vision Research.

[29]  J D Mollon,et al.  Reversed effect of adapting stimuli on visual sensitivity , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[30]  Angela M. Brown,et al.  Higher order color mechanisms , 1986, Vision Research.

[31]  Vision Research , 1961, Nature.

[32]  Qasim Zaidi,et al.  The effect of adaptation on the differential sensitivity of the S-cone color system , 1992, Vision Research.

[33]  S. Harnad Psychophysical and cognitive aspects of categorical perception: A critical overview , 1987 .

[34]  K. Gegenfurtner,et al.  Cortical mechanisms of colour vision , 2003, Nature Reviews Neuroscience.

[35]  Kathy T. Mullen,et al.  Assumptions concerning orthogonality in threshold-scaled versus cone-contrast colour spaces , 2001, Vision Research.

[36]  Rhea T Eskew,et al.  Chromatic masking in the (ΔL/L, ΔM/M) plane of cone-contrast space reveals only two detection mechanisms , 1998, Vision Research.

[37]  George A. Gescheider,et al.  Hearing: Physiological Acoustics, Neural Coding, and Psychoacoustics , 1989 .

[38]  V C Smith,et al.  Phase-dependent sensitivity to heterochromatic flicker. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[39]  S. Harnad Categorical Perception: The Groundwork of Cognition , 1990 .

[40]  D. Levi,et al.  The influence of adaptation on perceived visual location , 1997, Vision Research.

[41]  Patrick Cavanagh,et al.  Independent orientation-selective mechanisms for the cardinal directions of colour space , 1990, Vision Research.

[42]  Peter Lennie,et al.  Coding of color and form in the geniculostriate visual pathway (invited review). , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  London,et al.  Form and Space Vision , 1972 .

[44]  A. Basbaum,et al.  The senses : a comprehensive reference , 2008 .

[45]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[46]  Sabine Süsstrunk,et al.  Chromatic contrast detection in spatial chromatic noise , 2004, Visual Neuroscience.

[47]  Franco Giulianini,et al.  Theory of chromatic noise masking applied to testing linearity of S-cone detection mechanisms. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[48]  Karl R Gegenfurtner,et al.  Classification images for chromatic signal detection. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[49]  Rhea T Eskew,et al.  ON and OFF S-cone pathways have different long-wave cone inputs , 2000, Vision Research.

[50]  M. B. Mandler,et al.  Mechanisms of simultaneous color induction. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[51]  N. Graham Visual Pattern Analyzers , 1989 .

[52]  Rhea T Eskew,et al.  Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity. , 2003, Visual neuroscience.

[53]  W. McIlhagga,et al.  Detection mechanisms in L-, M-, and S-cone contrast space. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[54]  Colin W G Clifford,et al.  Interactions between color and luminance in the perception of orientation. , 2003, Journal of vision.

[55]  Yves le Grand,et al.  Form and Space Vision , 1967 .

[56]  J. Robson,et al.  Discrimination at threshold: Labelled detectors in human vision , 1981, Vision Research.

[57]  R. M. Boynton Human color vision , 1979 .

[58]  C. F. Stromeyer,et al.  Adaptational effects of short wave cone signals on red-green chromatic detection , 1988, Vision Research.

[59]  Michael A Webster,et al.  Interactions between chromatic adaptation and contrast adaptation in color appearance , 2000, Vision Research.

[60]  Kenneth Knoblauch,et al.  Perceptual classification of chromatic modulation , 2005, Visual Neuroscience.

[61]  A. Stockman,et al.  Spectrally opponent inputs to the human luminance pathway: slow +L and −M cone inputs revealed by low to moderate long‐wavelength adaptation , 2005, The Journal of physiology.

[62]  Rhea T. Eskew,et al.  Nonlinear cone combination in S cone mechanisms: Results that are independent of color representation and off-axis looking , 2005 .

[63]  Michael D'Zmura,et al.  Color in visual search , 1991, Vision Research.

[64]  William T. Newsome,et al.  Correlation between MT activity and behavioral judgment of visual speed in macaque monkeys , 2010 .

[65]  Kenneth Knoblauch,et al.  Spectral bandwidths for the detection of color , 1998, Vision Research.

[66]  A. Nagy,et al.  Uncertainty, attentional capacity and chromatic mechanisms in visual search , 2001, Vision Research.

[67]  Steven C. Dakin,et al.  The detection of structure in glass patterns: Psychophysics and computational models , 1997, Vision Research.

[68]  C. F. Stromeyer,et al.  Facilitation between the luminance and red–green detection mechanisms: enhancing contrast differences across edges , 1999, Vision Research.

[69]  C. F. Stromeyer,et al.  Separable red-green and luminance detectors for small flashes , 1994, Vision Research.

[70]  W. S. Stiles Mechanisms of colour vision : selected papers of W.S. Stiles ; with a new introductory essay , 1978 .

[71]  John D. Mollon,et al.  The Chromatic Antagonisms of Opponent Process Theory are not the Same as Those Revealed in Studies of Detection and Discrimination , 1987 .

[72]  D Whitaker,et al.  Chromatic adaptation, perceived location, and color tuning properties , 2004, Visual Neuroscience.

[73]  Allen L Nagy,et al.  Color mechanisms used in selecting stimuli for attention and making discriminations , 2004, Visual Neuroscience.

[74]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  Larry N. Thibos,et al.  Validation of a clinical aberrometer , 2002 .

[76]  P. Lennie,et al.  Mechanisms of color vision. , 1988, Critical reviews in neurobiology.

[77]  Kenneth Knoblauch,et al.  Dual bases in dichromatic color space , 1995 .

[78]  E. Zrenner,et al.  Colour Vision Deficiencies XII , 1995, Documenta Ophthalmologica Proceedings Series.

[79]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[80]  Zhaoping Li,et al.  What does post-adaptation color appearance reveal about cortical color representation? , 1993, Vision Research.

[81]  Edward N. Pugh,et al.  Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus , 1992, Vision Research.

[82]  Daniel C Kiper,et al.  The detection of colored Glass patterns. , 2003, Journal of vision.

[83]  M. Webster,et al.  The influence of contrast adaptation on color appearance , 1994, Vision Research.

[84]  Rick O. Gilmore Do enriched visual displays improve infants' discrimination of optic flow patterns simulating self-motion? , 2010 .

[85]  M. B. Mandler,et al.  A three channel model of temporal frequency perception , 1984, Vision Research.

[86]  K. Mullen,et al.  Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms , 1996 .

[87]  Aaron C. Bilson,et al.  Color contrast and contextual influences on color appearance. , 2002, Journal of vision.

[88]  Kenneth Knoblauch,et al.  Reply to letter to editor by M. J. Sankeralli and K. T. Mullen published in Vision Research, 41, 53–55: Lights and neural responses do not depend on choice of color space , 2001, Vision Research.

[89]  Richard E. Kronauer,et al.  Temporal properties of the red-green chromatic mechanism , 1994, Vision Research.

[90]  Q. Zaidi Is there a perceptual color space , 2001 .

[91]  J. Krauskopf,et al.  Color discrimination and adaptation , 1992, Vision Research.

[92]  Angela M. Brown,et al.  Masking of grating detection in the isoluminant plane of DKL color space. , 2004, Visual neuroscience.

[93]  James T. Townsend,et al.  Mathematical Psychology , 2020, Psychology.

[94]  E. D. Montag,et al.  Spectrally opponent inputs to the human luminance pathway: slow +M and −L cone inputs revealed by intense long‐wavelength adaptation , 2005, The Journal of physiology.

[95]  Bart Farell,et al.  Coherence, cardinal directions and higher-order mechanisms , 1996, Vision Research.

[96]  Gordon T. Plant,et al.  Temporal frequency discrimination in human vision: Evidence for an additional mechanism in the low spatial and high temporal frequency region , 1985, Vision Research.

[97]  S. Wuerger,et al.  The cone inputs to the unique-hue mechanisms , 2005, Vision Research.

[98]  C. Stromeyer,et al.  Human cones appear to adapt at low light levels: Measurements on the red—green detection mechanism , 1995, Vision Research.

[99]  R. L. Valois Color Vision Mechanisms in the Monkey , 1960 .

[100]  C. Stromeyer,et al.  Visual interactions with luminance and chromatic stimuli. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[101]  V C Smith,et al.  Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[102]  E. N. Pugh,et al.  The π Mechanisms of W S Stiles: An Historical Review , 1986, Perception.

[103]  A. Ahumada Classification image weights and internal noise level estimation. , 2002, Journal of vision.

[104]  Mahito Fujii,et al.  Sensitivity to modulation of color distribution in multicolored textures , 2001, Vision Research.

[105]  Yoko Mizokami,et al.  Chromatic and contrast selectivity in color contrast adaptation , 2004, Visual Neuroscience.

[106]  E N Pugh,et al.  Red/Green color opponency at detection threshold. , 1983, Science.

[107]  D. Jameson,et al.  An opponent-process theory of color vision. , 1957, Psychological review.

[108]  Kathy T Mullen,et al.  Ratio model serves suprathreshold color--luminance discrimination. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[109]  C. F. Stromeyer,et al.  Spatial masking does not reveal mechanisms selective to combined luminance and red–green color , 1999, Vision Research.

[110]  J. Mollon,et al.  A theory of theΠ1 andΠ3 color mechanisms of stiles , 1979, Vision Research.

[111]  C F Stromeyer,et al.  Detection uncertainty and the facilitation of chromatic detection by luminance contours. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[112]  Sophie M. Wuerger,et al.  'Color Vision: From Genes to Perception' , 2000 .

[113]  R. Weale,et al.  Colour Vision Deficiencies , 1981 .

[114]  Qasim Zaidi,et al.  Adaptive orthogonalization of opponent-color signals , 1993, Biological Cybernetics.