Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance

We demonstrate semiconductor terahertz (THz) resonators with sub-wavelength dimensions in all three dimensions of space. The maximum confinement is obtained for resonators with a diameter of 13 μm, which operate at a wavelength of ≈272 μm. This corresponds to a λeff/6 confinement, where λeff is the wavelength inside the material (or λ/20, if the free space wavelength is considered). These highly sub-wavelength devices operate on the fundamental magnetic resonance, which corresponds to the fundamental oscillation mode of split-ring resonators and is usually inactive in purely optical resonators. In this respect, these resonators are another step towards the hybridization of optics and electronics at THz frequencies. As a proof of principle for cavity quantum electrodynamics experiments, we apply these resonators to THz intersubband polaritons.

[1]  Mattias Beck,et al.  Microcavity Laser Oscillating in a Circuit-Based Resonator , 2010, Science.

[2]  F. Capasso,et al.  Quantum cascade lasers with double metal-semiconductor waveguide resonators , 2002 .

[3]  Y. Kivshar,et al.  Tunable split-ring resonators for nonlinear negative-index metamaterials. , 2006, Optics express.

[4]  Kengo Nozaki,et al.  Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers , 2006 .

[5]  Matthew Pelton,et al.  Quantum-dot-induced transparency in a nanoscale plasmonic resonator. , 2010, Optics express.

[6]  Soon-Hong Kwon,et al.  Electrically Driven Single-Cell Photonic Crystal Laser , 2004, Science.

[7]  David R. Smith,et al.  Hybrid resonant phenomena in a SRR/YIG metamaterial structure. , 2009, Optics express.

[8]  David R. Smith,et al.  Modulating and tuning the response of metamaterials at the unit cell level. , 2007, Optics express.

[9]  R. S. Stepleman,et al.  Optical Properties of Metal-dielectric-metal Microcavities in the Thz Frequency Range References and Links , 2022 .

[10]  Cristiano Ciuti,et al.  Input- output theory of cavities in the ultrastrong coupling regime : The case of time-independent cavity parameters , 2006, cond-mat/0606554.

[11]  David R. Smith,et al.  Wave mixing in nonlinear magnetic metacrystal , 2011 .

[12]  C. Manolatou,et al.  Subwavelength Nanopatch Cavities for Semiconductor Plasmon Lasers , 2007, IEEE Journal of Quantum Electronics.

[13]  Jacob Scheuer,et al.  Lasing from a circular Bragg nanocavity with an ultrasmall modal volume , 2005 .

[14]  Gennady Shvets,et al.  Phase conjugation and negative refraction using nonlinear active metamaterials. , 2010, Physical review letters.

[15]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[16]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[17]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[18]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[19]  A. Pourkabirian,et al.  Observation of the dynamical Casimir effect in a superconducting circuit , 2011, Nature.

[20]  C. Sirtori,et al.  Ultrastrong light-matter coupling regime with polariton dots. , 2010, Physical review letters.

[21]  Marco Rahm,et al.  Hybridization induced transparency in composites of metamaterials and atomic media. , 2011, Optics express.

[22]  T. Itoh,et al.  Zero-Index Terahertz Quantum-Cascade Metamaterial Lasers , 2010, IEEE Journal of Quantum Electronics.

[23]  Cristiano Ciuti,et al.  Quantum vacuum properties of the intersubband cavity polariton field , 2005, cond-mat/0504021.

[24]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[25]  M. Sinclair,et al.  Strong coupling between nanoscale metamaterials and phonons. , 2011, Nano letters.