Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl.

We show a versatile method for the preparation of a variety of humidity-responsive actuators based on a single sheet of a hydrogen-bonded, uniaxially aligned liquid crystal polymer network. In this approach, the asymmetry in the molecular trigger in the anisotropic polymer film plays a dominant role leading to programmed deformation events. The material is locally treated with a potassium hydroxide solution to create the asymmetry in the responsiveness toward humidity, which allows to prepare actuators that bend, fold, or curl.

[1]  Peter Fratzl,et al.  Origami-like unfolding of hydro-actuated ice plant seed capsules. , 2011, Nature communications.

[2]  K. Harris,et al.  Physical Properties of Anisotropically Swelling Hydrogen-Bonded Liquid Crystal Polymer Actuators , 2007, Journal of Microelectromechanical Systems.

[3]  Shape and chirality transitions in off-axis twist nematic elastomer ribbons. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Michael G Debije,et al.  Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. , 2012, Angewandte Chemie.

[5]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[6]  C. Hawker,et al.  Triggered structural and property changes in polymeric nanomaterials , 2011 .

[7]  R. Vaia,et al.  Photodriven, Flexural–Torsional Oscillation of Glassy Azobenzene Liquid Crystal Polymer Networks , 2011 .

[8]  M. Wyart,et al.  Curling instability induced by swelling , 2011 .

[9]  D. Brooks,et al.  Bending and stretching actuation of soft materials through surface-initiated polymerization. , 2011, Angewandte Chemie.

[10]  K. M. Lee,et al.  Autonomous, Hands‐Free Shape Memory in Glassy, Liquid Crystalline Polymer Networks , 2012, Advanced materials.

[11]  D. Broer,et al.  Printed artificial cilia from liquid-crystal network actuators modularly driven by light. , 2009, Nature materials.

[12]  C. Ohm,et al.  Liquid Crystalline Elastomers as Actuators and Sensors , 2010, Advanced materials.

[13]  Robert Langer,et al.  Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients , 2013, Science.

[14]  Babak Ziaie,et al.  Laser‐micromachined cellulose acetate adhesive tape as a low‐cost smart material , 2013 .

[15]  B. Sumerlin,et al.  Future perspectives and recent advances in stimuli-responsive materials , 2010 .

[16]  Molla R. Islam,et al.  Polymer-based muscle expansion and contraction. , 2013, Angewandte Chemie.

[17]  E. M. Terentjev,et al.  Liquid Crystal Elastomers , 2003 .

[18]  Leonid Ionov,et al.  Hierarchical Multi‐Step Folding of Polymer Bilayers , 2013 .

[19]  J. Ji,et al.  Humidity responsive asymmetric free-standing multilayered film. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[20]  K. Harris,et al.  Self-assembled polymer films for controlled agent-driven motion. , 2005, Nano letters.

[21]  J. Cornelissen,et al.  Conversion of light into macroscopic helical motion. , 2014, Nature chemistry.

[22]  Haifeng Yu,et al.  Photocontrollable Liquid‐Crystalline Actuators , 2011, Advanced materials.

[23]  S. Minko,et al.  Stimuli-responsive hydrogel thin films , 2009 .

[24]  Hossam Haick,et al.  Flexible sensors based on nanoparticles. , 2013, ACS nano.

[25]  P. Keller,et al.  Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. , 2009, Journal of the American Chemical Society.

[26]  Junqi Sun,et al.  Humido- and Thermo-Responsive Free-Standing Films Mimicking the Petals of the Morning Glory Flower , 2009 .

[27]  L. Ionov Biomimetic Hydrogel‐Based Actuating Systems , 2013 .

[28]  Laurens T. de Haan,et al.  Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. , 2012, Angewandte Chemie.

[29]  A. Schenning,et al.  Responsive Nanoporous Smectic Liquid Crystal Polymer Networks as Efficient and Selective Adsorbents , 2014 .

[30]  Nelson V. Tabiryan,et al.  Liquid crystalline polymer cantilever oscillators fueled by light , 2010 .

[31]  Ton Peijs,et al.  Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network. , 2013, ACS applied materials & interfaces.

[32]  Dirk J. Broer,et al.  Accordion‐like Actuators of Multiple 3D Patterned Liquid Crystal Polymer Films , 2014 .

[33]  T. Ikeda,et al.  Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.

[34]  T. Ikeda,et al.  Photomobile polymer materials—various three-dimensional movements , 2009 .

[35]  K. Harris,et al.  Thermo‐Mechanical Responses of Liquid‐Crystal Networks with a Splayed Molecular Organization , 2005 .

[36]  Fangfu Ye,et al.  Shape selection of twist-nematic-elastomer ribbons , 2011, Proceedings of the National Academy of Sciences.

[37]  Dirk J Mulder,et al.  Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors , 2014 .

[38]  Wei Liu,et al.  CORRIGENDUM: Biodegradation-inspired bioproduction of methylacetoin and 2-methyl-2,3-butanediol , 2013, Scientific Reports.

[39]  G. Crawford,et al.  Cross-linked liquid crystalline systems: from rigid polymer networks to elastomers , 2011 .

[40]  R. Kupferman,et al.  Geometry and Mechanics in the Opening of Chiral Seed Pods , 2011, Science.

[41]  C. Dawson,et al.  How pine cones open , 1997, Nature.

[42]  A. Schenning,et al.  Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks. , 2012, Journal of the American Chemical Society.