Classical communication cost of quantum steering

Quantum steering is observed when performing appropriate local measurements on an entangled state. Here we discuss the possibility of simulating classically this effect, using classical communication instead of entanglement. We show that infinite communication is necessary for exactly simulating steering for any pure entangled state, as well as for a class of mixed entangled states. Moreover, we discuss the communication cost of steering for general entangled states, as well as approximate simulation. Our findings reveal striking differences between Bell nonlocality and steering, and provide a natural way of measuring the strength of the latter.

[1]  D. J. Saunders,et al.  Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole , 2011 .

[2]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[3]  A. Falcon Physics I.1 , 2018 .

[4]  Michael Steiner,et al.  Towards quantifying non-local information transfer: finite-bit non-locality , 1999, quant-ph/9902014.

[5]  Sophie Laplante,et al.  Simulating quantum correlations as a distributed sampling problem (9 pages) , 2005, quant-ph/0507120.

[6]  G. H. Aguilar,et al.  Detection of entanglement in asymmetric quantum networks and multipartite quantum steering , 2014, Nature Communications.

[7]  Tamás Vértesi,et al.  Joint measurability, Einstein-Podolsky-Rosen steering, and Bell nonlocality. , 2014, Physical review letters.

[8]  Oded Regev,et al.  Simulating Quantum Correlations with Finite Communication , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[9]  V. Buchstaber,et al.  Mathematical Proceedings of the Cambridge Philosophical Society , 1979 .

[10]  Gilles Brassard,et al.  Cost of Exactly Simulating Quantum Entanglement with Classical Communication , 1999 .

[11]  Miguel Navascués,et al.  Quantifying Einstein-Podolsky-Rosen steering. , 2013, Physical review letters.

[12]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[13]  Tamás Vértesi,et al.  EPR Steering inequalities with Communication Assistance , 2016, Scientific Reports.

[14]  N. Gisin,et al.  A local hidden variable model of quantum correlation exploiting the detection loophole , 1999 .

[15]  David Wells,et al.  The Penguin Dictionary of Curious and Interesting Geometry , 1992 .

[16]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[17]  J. Watrous,et al.  Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. , 2015, Physical review letters.

[18]  Daniel Cavalcanti,et al.  Inequivalence of entanglement, steering, and Bell nonlocality for general measurements , 2015, 1501.03332.

[19]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[20]  Otfried Gühne,et al.  Joint measurability of generalized measurements implies classicality. , 2014, Physical review letters.

[21]  PSA 2002 : proceedings of the 2002 biennial meeting of the Philosophy of Science Association , 2002 .

[22]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[23]  A Rutkowski,et al.  Unbounded Violation of Quantum Steering Inequalities. , 2014, Physical review letters.

[24]  D. Bacon,et al.  Communication cost of simulating Bell correlations. , 2003, Physical review letters.

[25]  M D Reid,et al.  Genuine multipartite Einstein-Podolsky-Rosen steering. , 2012, Physical review letters.

[26]  Francesco Buscemi,et al.  All entangled quantum states are nonlocal. , 2011, Physical review letters.

[27]  Nicolas Gisin,et al.  Entangled states cannot be classically simulated in generalized Bell experiments with quantum inputs , 2013 .

[28]  Matthew F. Pusey,et al.  Negativity and steering: A stronger Peres conjecture , 2013, 1305.1767.

[29]  Rodrigo Gallego,et al.  The Resource Theory of Steering , 2014, TQC.

[30]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[32]  Paul Skrzypczyk,et al.  Postquantum Steering. , 2015, Physical review letters.

[33]  B. M. Fulk MATH , 1992 .

[34]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.