The Reversing Number of a Digraph

Abstract A minimum reversing set of a diagraph is a smallest sized set of arcs which when reversed makes the diagraph acyclic. We investigate a related issue: Given an acyclic diagraph D, what is the size of a smallest tournament T which has the arc set of D as a minimun reversing set? We show that such a T always exists and define the reversing number of an acyclic diagraph to be the number of vertices in T minus the number of vertices in D. We also derive bounds and exact values of the reversing number for certain classes of acyclic diagraphs.

[1]  P. Slater Inconsistencies in a schedule of paired comparisons , 1961 .

[2]  L. Hubert SERIATION USING ASYMMETRIC PROXIMITY MEASURES , 1976 .

[3]  K. Reid,et al.  On Sets of Arcs Containing No Cycles in a Tournament* , 1969, Canadian Mathematical Bulletin.

[4]  Jean-Claude Bermond The circuit - hypergraph of a tournament , 1975 .

[5]  Bernhard Korte,et al.  Approximative Algorithms for Discrete Optimization Problems , 1979 .

[6]  Gerhard Reinelt,et al.  On the acyclic subgraph polytope , 1985, Math. Program..

[7]  Martin Grötschel,et al.  Facets of the linear ordering polytope , 1985, Math. Program..

[8]  J. Bermond Ordres à distance minimum d'un tournoi et graphes partiels sans circuits maximaux , 1972 .

[9]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[10]  Wenceslas Fernandez de la Vega,et al.  On the maximum cardinality of a consistent set of arcs in a random tournament , 1983, J. Comb. Theory, Ser. B.

[11]  Anton Kotzig,et al.  On the maximal order of cyclicity of antisymmetric directed graphs , 1975, Discret. Math..

[12]  Joel Spencer Optimally ranking unrankable tournaments , 1980 .

[13]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[14]  Fred S. Roberts,et al.  Applied Combinatorics , 1984 .

[15]  Michael Jünger,et al.  Polyhedral combinatorics and the acyclic subdigraph problem , 1985 .

[16]  Lawrence Hubert,et al.  Applications of combinatorial programming to data analysis: Seriation using asymmetric proximity measures , 1977 .

[17]  S. Yau,et al.  Generation of all Hamiltonian Circuits, Paths, and Centers of a Graph, and Related Problems , 1967, IEEE Transactions on Circuit Theory.

[18]  G. G. Alway Matrices and Sequences , 1962 .

[19]  Frank Harary,et al.  On minimal feedback vertex sets of a digraph , 1975 .

[20]  J. Moon Topics on tournaments , 1968 .

[21]  Bernard Monjardet,et al.  Tournois et ordres n~dians pour une opinion , 1973 .

[22]  A. Lempel,et al.  Minimum Feedback Arc and Vertex Sets of a Directed Graph , 1966 .

[23]  Gerhard Reinelt,et al.  A Cutting Plane Algorithm for the Linear Ordering Problem , 1984, Oper. Res..

[24]  W. A. Thompson,et al.  Maximum-likelihood paired comparison rankings. , 1966, Biometrika.

[25]  Jean-Claude Bermond,et al.  Cycles in digraphs- a survey , 1981, J. Graph Theory.

[26]  W. A. Thompson,et al.  Rankings from Paired Comparisons , 1964 .

[27]  S. Hakimi On the degrees of the vertices of a directed graph , 1965 .

[28]  E. Lawler A Comment on Minimum Feedback Arc Sets , 1964 .

[29]  D. Younger Minimum Feedback Arc Sets for a Directed Graph , 1963 .

[30]  J. Moon,et al.  On Sets of Consistent Arcs in a Tournament , 1965, Canadian Mathematical Bulletin.

[31]  Sundaram Seshu,et al.  Linear Graphs and Electrical Networks , 1961 .

[32]  K. B. Reid,et al.  Disproof of a conjecture of Erdös and moser on tournaments , 1970 .

[33]  Frank Harary,et al.  Graph Theory , 2016 .

[34]  Joel Spencer Optimal ranking of tournaments , 1971, Networks.

[35]  T. Kamae Notes on a Minimum Feedback Arc Set , 1967, IEEE Transactions on Circuit Theory.