Wurtzite InAs Nanocrystals with Short-Wavelength Infrared Emission Synthesized through the Cation Exchange of Cu3As Nanocrystals

[1]  U. Banin,et al.  Zn‐Doped P‐Type InAs Nanocrystal Quantum Dots , 2022, Advanced materials.

[2]  L. Manna,et al.  Near-Infrared Light-Emitting Diodes Based on RoHS-Compliant InAs/ZnSe Colloidal Quantum Dots , 2022, ACS energy letters.

[3]  Zhi‐Kuang Tan,et al.  Efficient Short‐Wave Infrared Light‐Emitting Diodes Based on Heavy‐Metal‐Free Quantum Dots , 2022, Advanced materials.

[4]  J. Maultzsch,et al.  Full-Spectrum InP-Based Quantum Dots with Near-Unity Photoluminescence Quantum Efficiency. , 2022, ACS nano.

[5]  L. Manna,et al.  ZnCl2 Mediated Synthesis of InAs Nanocrystals with Aminoarsine , 2022, Journal of the American Chemical Society.

[6]  Haiyang Li,et al.  ZnF2-Assisted Synthesis of Highly Luminescent InP/ZnSe/ZnS Quantum Dots for Efficient and Stable Electroluminescence. , 2022, Nano letters.

[7]  Jiangfeng Du,et al.  Enhanced emission directivity from asymmetrically strained colloidal quantum dots , 2022, Science advances.

[8]  D. Talapin,et al.  Synthesis of In1–xGaxP Quantum Dots in Lewis Basic Molten Salts: The Effects of Surface Chemistry, Reaction Conditions, and Molten Salt Composition , 2022, The Journal of Physical Chemistry C.

[9]  U. Banin,et al.  Luminescent Anisotropic Wurtzite InP Nanocrystals. , 2021, Nano letters.

[10]  F. Gao,et al.  Advances in solution-processed near-infrared light-emitting diodes , 2021, Nature Photonics.

[11]  X. Shan,et al.  Synthesis of Wurtzite In and Ga Phosphide Quantum Dots Through Cation Exchange Reactions , 2021, Chemistry of Materials.

[12]  F. P. García de Arquer,et al.  Ligand Exchange at a Covalent Surface Enables Balanced Stoichiometry in III-V Colloidal Quantum Dots. , 2021, Nano letters.

[13]  Zhi‐Kuang Tan,et al.  Ultra-Confined Visible-Light-Emitting Colloidal Indium Arsenide Quantum Dots. , 2021, Nano letters.

[14]  U. Banin,et al.  InAs Nanocrystals with Robust p‐Type Doping , 2020, Advanced Functional Materials.

[15]  Heejae Lee,et al.  Efficient and stable blue quantum dot light-emitting diode , 2020, Nature.

[16]  M. Bawendi,et al.  Scalable Synthesis of InAs Quantum Dots Mediated through Indium Redox Chemistry. , 2020, Journal of the American Chemical Society.

[17]  H. Jackson,et al.  Exploring the band structure of Wurtzite InAs nanowires using photocurrent spectroscopy , 2019, Nano Research.

[18]  A. Urban,et al.  Fast Electron and Slow Hole Relaxation in InP-Based Colloidal Quantum Dots. , 2019, ACS nano.

[19]  Xiaofei Zhao,et al.  Efficient Near‐Infrared Light‐Emitting Diodes based on In(Zn)As–In(Zn)P–GaP–ZnS Quantum Dots , 2019, Advanced Functional Materials.

[20]  Dae-Young Chung,et al.  Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes , 2019, Nature.

[21]  Xiaogang Peng,et al.  CdSe@CdS Dot@Platelet Nanocrystals: Controlled Epitaxy, Mono-Exponential Decay of Two-Dimensional Exciton, and Non-Blinking Photoluminescence of Single Nanocrystal. , 2019, Journal of the American Chemical Society.

[22]  Jong‐Soo Lee,et al.  High-Performance Hybrid InP QDs/Black Phosphorus Photodetector. , 2019, ACS Applied Materials and Interfaces.

[23]  Yang Li,et al.  Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence. , 2019, Journal of the American Chemical Society.

[24]  Whi Dong Kim,et al.  Controlling Ion-Exchange Balance and Morphology in Cation Exchange from Cu3–xP Nanoplatelets into InP Crystals , 2019, Chemistry of Materials.

[25]  M. Beard,et al.  Infrared Quantum Dots: Progress, Challenges, and Opportunities. , 2019, ACS nano.

[26]  Jung-Hoon Song,et al.  Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics , 2018, Nature Communications.

[27]  R. Klie,et al.  Colloidal Chemistry in Molten Salts: Synthesis of Luminescent In1- xGa xP and In1- xGa xAs Quantum Dots. , 2018, Journal of the American Chemical Society.

[28]  H. Gerritsen,et al.  Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth , 2018, Journal of the American Chemical Society.

[29]  J. Arbiol,et al.  Triphenyl Phosphite as the Phosphorus Source for the Scalable and Cost-Effective Production of Transition Metal Phosphides , 2018 .

[30]  R. Quintero‐Bermudez,et al.  Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy , 2017, Nature.

[31]  Oliver T. Bruns,et al.  Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared , 2016, Nature Communications.

[32]  Z. Hens,et al.  InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry. , 2016, Journal of the American Chemical Society.

[33]  Michael G. Pecht,et al.  RoHS compliance in safety and reliability critical electronics , 2016, Microelectron. Reliab..

[34]  Jaehoon Lim,et al.  Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. , 2016, Chemical reviews.

[35]  Cherie R. Kagan,et al.  Building devices from colloidal quantum dots , 2016, Science.

[36]  Byeongdu Lee,et al.  Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology. , 2016, ACS nano.

[37]  Shui-Tong Lee,et al.  Pulsed Lasers Employing Solution‐Processed Plasmonic Cu3−xP Colloidal Nanocrystals , 2016, Advanced materials.

[38]  Christophe Lincheneau,et al.  Chemistry of InP Nanocrystal Syntheses , 2016 .

[39]  K. Jensen,et al.  The Unexpected Influence of Precursor Conversion Rate for III–V Quantum Dots , 2015 .

[40]  L. Manna,et al.  Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals , 2015, Journal of the American Chemical Society.

[41]  A. Cavalli,et al.  Cu3-xP Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions , 2015, Chemistry of materials : a publication of the American Chemical Society.

[42]  K. Char,et al.  Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. , 2013, ACS nano.

[43]  N. Pradhan,et al.  Semiconducting and plasmonic copper phosphide platelets. , 2013, Angewandte Chemie.

[44]  A. Paul Alivisatos,et al.  Ion exchange synthesis of III-V nanocrystals. , 2012, Journal of the American Chemical Society.

[45]  G. Patriarche,et al.  Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. , 2012, ACS nano.

[46]  A. Catellani,et al.  Direct determination of polarity, faceting, and core location in colloidal core/shell wurtzite semiconductor nanocrystals. , 2012, ACS nano.

[47]  R. Schaller,et al.  Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. , 2012, Journal of the American Chemical Society.

[48]  Uri Banin,et al.  Highly emissive nano rod-in-rod heterostructures with strong linear polarization. , 2011, Nano letters.

[49]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[50]  Philippe Caroff,et al.  Crystal phase engineering in single InAs nanowires. , 2010, Nano letters.

[51]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[52]  Kai Chen,et al.  InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible , 2008, Nano research.

[53]  J. Hollingsworth,et al.  The scaling of the effective band gaps in indium-arsenide quantum dots and wires. , 2008, ACS nano.

[54]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[55]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[56]  Assaf Aharoni,et al.  Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence. , 2006, Journal of the American Chemical Society.

[57]  Uri Banin,et al.  Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores , 2000 .