Periodic points of a Landen transformation

Abstract We prove the existence of 3-periodic orbits in a dynamical system associated to a Landen transformation previously studied by Boros, Chamberland and Moll, disproving a conjecture on the dynamics of this planar map introduced by the latter author. To this end we present a systematic methodology to determine and locate analytically isolated periodic points of algebraic maps. This approach can be useful to study other discrete dynamical systems with algebraic nature. Complementary results on the dynamics of the map associated with the Landen transformation are also presented.

[1]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[2]  Jaume Llibre,et al.  THREE NESTED LIMIT CYCLES IN DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS WITH TWO ZONES , 2012 .

[3]  Marc Chamberland,et al.  Dynamics of the degree six Landen transformation , 2006 .

[4]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[5]  Michael Schanz,et al.  Critical homoclinic orbits lead to snap-back repellers , 2011 .

[6]  Laura Gardini,et al.  About Two Mechanisms of Reunion of Chaotic Attractors , 1998 .

[7]  K. Deimling Fixed Point Theory , 2008 .

[8]  Armengol Gasull i Embid,et al.  Estudi de la dinàmica d’algunes aplicacions al pla , 2017 .

[9]  Victor H. Moll,et al.  Landen transformations and the integration of rational functions , 2002, Math. Comput..

[10]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[11]  Michael N. Vrahatis,et al.  A short proof and a generalization of Miranda’s existence theorem , 1989 .

[12]  Victor H. Moll,et al.  Numbers and Functions: From a Classical-Experimental Mathematician's Point of View , 2012 .

[13]  Liming Wu,et al.  Spectral gap of positive operators and applications , 2000 .

[14]  Laura Gardini,et al.  Homoclinic bifurcations in n -dimensional endomorphisms, due to expanding periodic points , 1994 .

[15]  A. Gasull,et al.  Bifurcation diagram and stability for a one-parameter family of planar vector fields , 2013, 1304.2163.

[16]  Wladyslaw Kulpa,et al.  THE POINCARE-MIRANDA THEOREM , 1997 .