Optimal portfolio choice with benchmarks

Abstract We construct an algorithm that makes it possible to numerically obtain an investor’s optimal portfolio under general preferences. In particular, the objective function and risks constraints may be driven by benchmarks (reflecting state-dependent preferences). We apply the algorithm to various classic optimal portfolio problems for which explicit solutions are available and show that our numerical solutions are compatible with them. This observation allows us to conclude that the algorithm can be trusted as a viable way to deal with portfolio optimisation problems for which explicit solutions are not in reach.

[1]  X. Zhou,et al.  PORTFOLIO CHOICE VIA QUANTILES , 2010 .

[2]  Fernando Zapatero,et al.  Monte Carlo computation of optimal portfolios in complete markets , 2003 .

[3]  Optimal Portfolio Under State-Dependent Expected Utility , 2018 .

[4]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[5]  Ken-ichi Inada,et al.  On a Two-Sector Model of Economic Growth: Comments and a Generalization , 1963 .

[6]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[7]  C. Bernard,et al.  Rationalizing Investors ’ Choices , 2015 .

[8]  Darinka Dentcheva,et al.  Optimization Models with Probabilistic Constraints , 2006 .

[9]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  Suleyman Basak,et al.  Risk Management with Benchmarking , 2001, Manag. Sci..

[12]  M. Machina Choice under Uncertainty: Problems Solved and Unsolved , 1987 .

[13]  L. Rüschendorf,et al.  OPTIMALITY OF PAYOFFS IN LÉVY MODELS , 2014 .

[14]  W. Edwards The prediction of decisions among bets. , 1955, Journal of experimental psychology.

[15]  M. Birnbaum,et al.  Testing Descriptive Utility Theories: Violations of Stochastic Dominance and Cumulative Independence , 1998 .

[16]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[17]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[18]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[19]  J. Teugels,et al.  Nonexpected Utility Theory , 2006 .

[20]  L. Rüschendorf,et al.  Optimal payoffs under state-dependent preferences , 2013, 1308.6465.

[21]  Lucie Teplá,et al.  Optimal investment with minimum performance constraints , 2001 .

[22]  Phil Dybvig,et al.  Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market , 1988 .

[23]  G. Carlier,et al.  OPTIMAL DEMAND FOR CONTINGENT CLAIMS WHEN AGENTS HAVE LAW INVARIANT UTILITIES , 2010 .

[24]  Thomas D. Sandry,et al.  Probabilistic and Randomized Methods for Design Under Uncertainty , 2007, Technometrics.

[25]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[26]  P. Boyle,et al.  Explicit Representation of Cost-Efficient Strategies , 2010 .

[27]  Lola L. Lopes,et al.  [Advances in Experimental Social Psychology] Advances in Experimental Social Psychology Volume 20 Volume 20 || Between Hope and Fear: The Psychology of Risk , 1987 .

[28]  G. Deelstra,et al.  Optimal investment strategies in the presence of a minimum guarantee , 2003 .

[29]  M. A. Hanson Invexity and the Kuhn–Tucker Theorem☆ , 1999 .

[30]  Suleyman Basak,et al.  Value-at-Risk Based Risk Management: Optimal Policies and Asset Prices , 1999 .

[31]  H. M. Markowitz Approximating Expected Utility by a Function of Mean and Variance , 2016 .

[32]  Kent D. Daniel,et al.  Measuring mutual fund performance with characteristic-based benchmarks , 1997 .

[33]  W. Edwards Subjective probabilities inferred from decisions. , 1962, Psychological review.

[34]  David Blake,et al.  Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans , 2006 .

[35]  Mark J. Machina,et al.  Non-Expected Utility and The Robustness of the Classical Insurance Paradigm , 1995 .

[36]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[37]  S. Vanduffel,et al.  Improving the Design of Financial Products in a Multidimensional Black-Scholes Market , 2010 .

[38]  L. Rüschendorf,et al.  Cost-efficiency in multivariate Lévy models , 2015 .

[39]  Michael H. Birnbaum Violations of monotonicity in judgment and decision making. , 1997 .

[40]  S. Browne Reaching goals by a deadline: digital options and continuous-time active portfolio management , 1996, Advances in Applied Probability.

[41]  R. Roll,et al.  A Mean/Variance Analysis of Tracking Error , 1992 .

[42]  J. Quiggin Generalized expected utility theory : the rank-dependent model , 1994 .

[43]  Hersh Shefrin,et al.  Behavioral Portfolio Theory , 2000, Journal of Financial and Quantitative Analysis.

[44]  Alexandre d'Aspremont,et al.  Shape constrained optimization with applications in finance and engineering , 2004 .

[45]  T. Björk Arbitrage Theory in Continuous Time , 2019 .

[46]  Tapen Sinha Economic and Financial Decisions under Risk , 2006 .

[47]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[48]  Sean P. Meyn,et al.  Probabilistic and Randomized Methods for Design under Uncertainty , 2006 .

[49]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[50]  S. Vanduffel,et al.  Rationalizing Investors Choice , 2013, 1302.4679.

[51]  L. Eeckhoudt,et al.  Economic and Financial Decisions under Risk , 2005 .

[52]  S. Vanduffel,et al.  Financial Bounds for Insurance Claims , 2012 .

[53]  Abraham Lioui,et al.  On optimal portfolio choice under stochastic interest rates , 2001 .

[54]  Ronnie Sircar,et al.  Time-Inconsistent Portfolio Investment Problems , 2014 .

[55]  Arjan Berkelaar,et al.  Optimal Portfolio Choice under Loss Aversion , 2000, Review of Economics and Statistics.

[56]  H. Levy First Degree Stochastic Dominance Violations: Decision Weights and Bounded Rationality , 2008 .

[57]  Lola L. Lopes,et al.  The Role of Aspiration Level in Risky Choice: A Comparison of Cumulative Prospect Theory and SP/A Theory. , 1999, Journal of mathematical psychology.

[58]  S. Vanduffel,et al.  Optimal portfolios under worst-case scenarios , 2012 .

[59]  C. Bernard,et al.  SIMPLIFIED HEDGE FOR PATH-DEPENDENT DERIVATIVES , 2016 .