The JCMT BISTRO Survey: An 850/450 μm Polarization Study of NGC 2071IR in Orion B

We present the results of simultaneous 450 μm and 850 μm polarization observations toward the massive star-forming region NGC 2071IR, a target of the BISTRO (B-fields in STar-forming Region Observations) Survey, using the POL-2 polarimeter and SCUBA-2 camera mounted on the James Clerk Maxwell Telescope. We find a pinched magnetic field morphology in the central dense core region, which could be due to a rotating toroidal disklike structure and a bipolar outflow originating from the central young stellar object IRS 3. Using the modified Davis–Chandrasekhar–Fermi method, we obtain a plane-of-sky magnetic field strength of 563 ± 421 μG in the central ∼0.12 pc region from 850 μm polarization data. The corresponding magnetic energy density of 2.04 × 10−8 erg cm−3 is comparable to the turbulent and gravitational energy densities in the region. We find that the magnetic field direction is very well aligned with the whole of the IRS 3 bipolar outflow structure. We find that the median value of polarization fractions is 3.0% at 450 μm in the central 3′ region, which is larger than the median value of 1.2% at 850 μm. The trend could be due to the better alignment of warmer dust in the strong radiation environment. We also find that polarization fractions decrease with intensity at both wavelengths, with slopes, determined by fitting a Rician noise model of 0.59 ± 0.03 at 450 μm and 0.36 ± 0.04 at 850 μm, respectively. We think that the shallow slope at 850 μm is due to grain alignment at the center being assisted by strong radiation from the central young stellar objects.

Lei Zhu | A. Scaife | P. Koch | A. Whitworth | N. Peretto | G. Fuller | T. Onaka | Sang-Sung Lee | D. Byun | C. Hull | D. Johnstone | P. Bastien | S. Viti | Jongsoo Kim | G. Savini | B. Matthews | Di Li | P. Friberg | M. Seta | J. Kwon | T. Nagata | Tsuyoshi Inoue | K. Kawabata | S. Eyres | S. Falle | J. Greaves | T. Hasegawa | D. Ward-Thompson | L. Fissel | A. Chrysostomou | J. Fiege | R. Friesen | S. Graves | M. Houde | J. Kirk | J. Richer | K. Lacaille | C. Dowell | J. Rawlings | A. Kataoka | M. Rawlings | H. Parsons | Jia‐Wei Wang | L. Qian | K. Qiu | T. Ching | Y. Duan | Jinghua Yuan | D. Eden | A. Rigby | Jianjun Zhou | Xindi Tang | Da-lei Li | G. Park | Miju Kang | Il-Gyo Jeong | H. Nakanishi | Jeong-Eun Lee | Kee-Tae Kim | Hongchi Wang | Zhiwei Chen | Tie Liu | Ji-hyun Kang | S. Inutsuka | F. Kemper | Minho Choi | Jungyeon Cho | H. Yoo | D. Berry | K. Pattle | T. Pyo | M. Griffin | F. Nakamura | D. Arzoumanian | M. Tahani | Guoyin Zhang | R. Rao | Junhao Liu | Xing Lu | Y. Doi | J. Robitaille | Chuan-Peng Zhang | Hua-b. Li | Sheng-Yuan Liu | T. Bourke | S. Lai | F. Kirchschlager | F. Priestley | I. De Looze | A. Soam | J. di Francesco | Ya-Wen Tang | Gwanjeong Kim | S. Mairs | Shinyoung Kim | W. Kwon | E. Chung | H. Duan | P. Diep | S. Hayashi | M. Matsumura | Yapeng Zhang | S. Sadavoy | K. Tomisaka | Y. Tsukamoto | Hsi-Wei Yen | N. Ohashi | K. Iwasaki | Y. Shimajiri | Chin-Fei Lee | H. Shinnaga | L. Fanciullo | S. Coudé | T. Gledhill | Mi-Ryang Kim | R. Furuya | C. Eswaraiah | K. Kim | A. Lyo | B. Retter | S. Van Loo | Mike Chen | I. Han | L. Tram | Hyeseung Lee | Thiem C. Hoang | Motohide Tamura | C. Law | V. Könyves | Hyeong-Sik Yun | T. Zenko | Masato I. N. Kobayashi | Nguyen Thi Bich Ngoc | S. Dai | E. Franzmann | Hong-Li Liu | Q. Gu | H. Saito | J. Hwang | T. Kusune | Yong-Hee Lee | Yunhee Choi | G. Moriarty-Schieven | Philippe André | Chang Won Lee | Huei-Ru Vivien Chen | Wen Ping Chen | Jannifer Hatchell | J.-W. Xie | Matt Griffin | T. Inoue | S. Lai | Hongli Liu | Chuan-peng Zhang | S. van Loo | H. Yun | Ya-wen Tang | Jinjin Xie | Ramprasad Rao | Takayoshi Kusune | Geumsook Park | Xing Lu | I. de Looze | J. Hatchell

[1]  M. Tamura,et al.  JCMT POL-2 and BISTRO Survey Observations of Magnetic Fields in the L1689 Molecular Cloud , 2020, 2011.09765.

[2]  P. Koch,et al.  The JCMT BISTRO Survey: Alignment between Outflows and Magnetic Fields in Dense Cores/Clumps , 2020, The Astrophysical Journal.

[3]  P. Andre',et al.  Properties of the dense core population in Orion B as seen by the Herschel Gould Belt survey , 2019, Astronomy & Astrophysics.

[4]  Zhi-Yun Li,et al.  Effects of grain alignment efficiency on synthetic dust polarization observations of molecular clouds. , 2019, Monthly notices of the Royal Astronomical Society.

[5]  T. Onaka,et al.  JCMT BISTRO Survey Observations of the Ophiuchus Molecular Cloud: Dust Grain Alignment Properties Inferred Using a Ricean Noise Model , 2019, The Astrophysical Journal.

[6]  L. Fissel,et al.  Submillimeter and Far-Infrared Polarimetric Observations of Magnetic Fields in Star-Forming Regions , 2019, Front. Astron. Space Sci..

[7]  T. Geballe,et al.  New Near-infrared Imaging and Spectroscopy of NGC 2071-IR , 2019, The Astrophysical Journal.

[8]  Zhi-Yun Li,et al.  Highly Ordered and Pinched Magnetic Fields in the Class 0 Protobinary System L1448 IRS 2 , 2018, The Astrophysical Journal.

[9]  P. Ho,et al.  Unveiling a magnetized jet from a low-mass protostar , 2018, Nature Communications.

[10]  Tetsuo Hasegawa,et al.  First Observations of the Magnetic Field inside the Pillars of Creation: Results from the BISTRO Survey , 2018, The Astrophysical Journal.

[11]  T. Henning,et al.  Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. I. VLA 1623 , 2018, The Astrophysical Journal.

[12]  P. Hennebelle,et al.  Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission , 2018, 1803.00028.

[13]  Erin G. Cox,et al.  ALMA’s Polarized View of 10 Protostars in the Perseus Molecular Cloud , 2018, 1802.00449.

[14]  R. Tilanus,et al.  The Dusty Galactic Center as Seen by SCUBA-2 , 2018 .

[15]  Zhi-Yun Li,et al.  ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks , 2018, 1801.03802.

[16]  Laura M. Fissel,et al.  Modelling dust polarization observations of molecular clouds through MHD simulations , 2017, 1709.08641.

[17]  P. Koch,et al.  The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament , 2017, 1707.05269.

[18]  Saeko S. Hayashi,et al.  First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt , 2017, 1704.08552.

[19]  Giorgio Savini,et al.  POL-2: a polarimeter for the James-Clerk-Maxwell telescope , 2016, Astronomical Telescopes + Instrumentation.

[20]  S. Reissl,et al.  On the origins of polarization holes in Bok globules , 2016, 1603.00270.

[21]  Qizhou Zhang,et al.  HELICAL MAGNETIC FIELDS IN THE NGC 1333 IRAS 4A PROTOSTELLAR OUTFLOWS , 2016, 1601.05229.

[22]  Enzo Pascale,et al.  BALLOON-BORNE SUBMILLIMETER POLARIMETRY OF THE VELA C MOLECULAR CLOUD: SYSTEMATIC DEPENDENCE OF POLARIZATION FRACTION ON COLUMN DENSITY AND LOCAL POLARIZATION-ANGLE DISPERSION , 2015, 1509.05298.

[23]  J. Pineda,et al.  The JCMT Gould Belt Survey: a quantitative comparison between SCUBA-2 data reduction methods , 2015, 1509.06385.

[24]  John E. Vaillancourt,et al.  Interstellar Dust Grain Alignment , 2015 .

[25]  M. Wright,et al.  TADPOL: A 1.3 mm SURVEY OF DUST POLARIZATION IN STAR-FORMING CORES AND REGIONS , 2013, 1310.6653.

[26]  S. Inutsuka,et al.  Conditions for circumstellar disc formation: effects of initial cloud configuration and sink treatment , 2013, 1307.1747.

[27]  C. Bennett,et al.  THE SUBMILLIMETER POLARIZATION SPECTRUM OF M17 , 2013, 1306.3259.

[28]  Zhi-Yun Li,et al.  ALIGNMENT BETWEEN FLATTENED PROTOSTELLAR INFALL ENVELOPES AND AMBIENT MAGNETIC FIELDS , 2013, 1305.2922.

[29]  Canadian Institute for Theoretical Astrophysics,et al.  First results from the Herschel Gould Belt Survey in Taurus , 2013, 1304.4098.

[30]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[31]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[32]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[33]  L. Mundy,et al.  MISALIGNMENT OF MAGNETIC FIELDS AND OUTFLOWS IN PROTOSTELLAR CORES , 2012, 1212.0540.

[34]  D. Johnstone,et al.  Molecular line contamination in the SCUBA-2 450 and 850 μm continuum data , 2012, 1204.6180.

[35]  Di Li,et al.  THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION , 2011, 1108.0410.

[36]  B. Matthews,et al.  MAGNETIC FIELD STRUCTURE AROUND LOW-MASS CLASS 0 PROTOSTARS: B335, L1527, AND IC348-SMM2 , 2011, 1103.4370.

[37]  S. Inutsuka,et al.  Effect of Magnetic Braking on Circumstellar Disk Formation in a Strongly Magnetized Cloud , 2010, 1009.2140.

[38]  M. A. Trinidad,et al.  RADIO JETS AND DISKS IN THE INTERMEDIATE-MASS STAR-FORMING REGION NGC2071IR , 2009 .

[39]  D. Marrone,et al.  IRAS 16293: A “MAGNETIC” TALE OF TWO CORES , 2009, 0910.5269.

[40]  A. Goodman,et al.  ANCHORING MAGNETIC FIELD IN TURBULENT MOLECULAR CLOUDS , 2009, 0908.1549.

[41]  M. Houde,et al.  MAGNETIC FIELDS AND INFALL MOTIONS IN NGC 1333 IRAS 4 , 2009, 0907.1301.

[42]  S. Basu,et al.  Three-dimensional Simulation of Magnetized Cloud Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion , 2008, 0804.4303.

[43]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[44]  Daniel J. Price,et al.  The effect of magnetic fields on the formation of circumstellar discs around young stars , 2007, 0705.1096.

[45]  Ryo Kandori,et al.  Near-Infrared Imaging Polarimetry of the NGC 2071 Star-Forming Region with SIRPOL , 2007, astro-ph/0701552.

[46]  A. Chepurnov,et al.  Polarization of Dust Emission in Clumpy Molecular Clouds and Cores , 2006, astro-ph/0611324.

[47]  Ramprasad Rao,et al.  Magnetic Fields in the Formation of Sun-Like Stars , 2006, Science.

[48]  B. Matthews,et al.  Interferometric Mapping of Magnetic Fields: NGC 2071IR , 2006, astro-ph/0607356.

[49]  Zhi-Yun Li,et al.  Quiescent Cores and the Efficiency of Turbulence-accelerated, Magnetically Regulated Star Formation , 2005, astro-ph/0502130.

[50]  Zhi-Yun Li,et al.  Does Magnetic Levitation or Suspension Define the Masses of Forming Stars? , 2003, astro-ph/0311426.

[51]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[52]  Zhi-Yun Li,et al.  Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking , 2003, astro-ph/0311377.

[53]  A. Lazarian Magnetic fields via polarimetry: progress on grain alignment theory , 2002, astro-ph/0208487.

[54]  T. Henning,et al.  Measurements of the Magnetic Field Geometry and Strength in Bok Globules , 2001 .

[55]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[56]  J. Girart,et al.  Interferometric Mapping of Magnetic Fields in Star-forming Regions. I. W51 e1/e2 Molecular Cores , 2000, astro-ph/0107322.

[57]  D. Ryu,et al.  Influence of Magnetic Fields on Pulsed, Radiative Jets , 2000 .

[58]  Jessie L. Dotson,et al.  The Far-Infrared Polarization Spectrum: First Results and Analysis , 1999 .

[59]  C. Darren Dowell,et al.  Far-Infrared Polarization Absorption in the Molecular Cloud Sagittarius B2* , 1997 .

[60]  C. Walker,et al.  HCO+ Spectropolarimetry and Millimeter Continuum Polarimetry of the DR 21 Star-forming Region , 1997 .

[61]  A. Goodman,et al.  Does near-infrared polarimetry reveal the magnetic field in cold dark clouds? , 1995 .

[62]  E. I. Robson,et al.  JHKL Imaging and K Polarimetry of the Bipolar Outflow NGC 2071 , 1993 .

[63]  F. Shu,et al.  Collapse of Magnetized Molecular Cloud Cores. II. Numerical Results , 1993 .

[64]  T. Mouschovias,et al.  Ambipolar diffusion and star formation: Formation and contraction of axisymmetric cloud cores. I. Formulation of the problem and method of solution , 1992 .

[65]  T. Wilson,et al.  Abundances in the interstellar medium , 1992 .

[66]  D. Aitken Dust Towards the Galactic Centre , 1989 .

[67]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[68]  N. Scoville,et al.  High-velocity molecular jets , 1984 .

[69]  J. Bally Energetic activity in a star-forming molecular cloud core; a disk constrained bipolar outflow in NGC 2071 , 1982 .

[70]  N. Kylafis,et al.  On mapping the magnetic field direction in molecular clouds by polarization measurements , 1981 .

[71]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[72]  L. Davis,et al.  The Strength of Interstellar Magnetic Fields , 1951 .

[73]  W. A. Hiltner,et al.  Polarization of Radiation from Distant Stars by the Interstellar Medium , 1949, Nature.

[74]  J S Hall,et al.  Observations of the Polarized Light From Stars. , 1949, Science.