Discriminative Object Tracking via Sparse Representation and Online Dictionary Learning

We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.

[1]  Qing Wang,et al.  Online discriminative object tracking with local sparse representation , 2012, 2012 IEEE Workshop on the Applications of Computer Vision (WACV).

[2]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[3]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[5]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[7]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[8]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Baochang Zhang,et al.  Visual object tracking via sample-based Adaptive Sparse Representation (AdaSR) , 2011, Pattern Recognit..

[10]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[11]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Natasha Gelfand,et al.  SURFTrac: Efficient tracking and continuous object recognition using local feature descriptors , 2009, CVPR.

[14]  Youfu Li,et al.  Robust visual tracking with structured sparse representation appearance model , 2012, Pattern Recognit..

[15]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[16]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[17]  Carlo Tomasi,et al.  Efficient Visual Object Tracking with Online Nearest Neighbor Classifier , 2010, ACCV.

[18]  Junzhou Huang,et al.  Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization , 2010, ECCV.

[19]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[20]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[21]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[24]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Xiaoqin Zhang,et al.  Robust Visual Tracking Based on Incremental Tensor Subspace Learning , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[27]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[28]  Sebastiano Battiato,et al.  SIFT Features Tracking for Video Stabilization , 2007, 14th International Conference on Image Analysis and Processing (ICIAP 2007).

[29]  Ming-Hsuan Yang,et al.  Incremental Learning for Visual Tracking , 2004, NIPS.

[30]  Vincent Lepetit,et al.  Fast Keypoint Recognition Using Random Ferns , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Horst Bischof,et al.  On-line Random Forests , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[32]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[33]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[34]  Hanqing Lu,et al.  Real-time visual tracking via Incremental Covariance Tensor Learning , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[35]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[36]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.