2-d stability of the Néel wall

AbstractWe are interested in thin-film samples in micromagnetism, where the magnetization m is a 2-d unit-length vector field. More precisely we are interested in transition layers which connect two opposite magnetizations, so called Néel walls.We prove stability of the 1-d transition layer under 2-d perturbations. This amounts to the investigation of the following singularly perturbed energy functional: $$ E_{2d}(m)= \epsilon \int |\nabla m|^2 \,{\rm d}x + \frac{1}{2} \int |\nabla^{-1/2}\nabla \cdot m|^2\,{\rm d}x. $$ The topological structure of this two-dimensional problem allows us to use a duality argument to infer the optimal lower bound. The lower bound relies on an ε-perturbation of the following logarithmically failing interpolation inequality $$ \int |\nabla^{1/2}\phi|^2 \, {\rm d}x \, \not\lesssim \, {\rm sup} |\phi| \, \int |\nabla \phi| \, {\rm d}x. $$

[1]  H. Riedel,et al.  Micromagnetic Treatment of Néel Walls , 1971 .

[2]  Robert V. Kohn,et al.  A reduced theory for thin‐film micromagnetics , 2002 .

[3]  Carlo Marinelli,et al.  Stochastic optimal control of delay equations arising in advertising models , 2004, math/0412403.

[4]  A nonlocal singular perturbation problem with periodic well potential , 2006 .

[5]  R. Kohn,et al.  Another Thin-Film Limit of Micromagnetics , 2005 .

[6]  Karl-Theodor Sturm,et al.  Convex functionals of probability measures and nonlinear diffusions on manifolds , 2005 .

[7]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[8]  François Alouges,et al.  Néel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations , 2002 .

[9]  Christof Melcher,et al.  Logarithmic lower bounds for Néel walls , 2004 .

[10]  H. A. M. van den Berg,et al.  Self‐consistent domain theory in soft‐ferromagnetic media. II. Basic domain structures in thin‐film objects , 1986 .

[11]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[12]  Laurent Stainier,et al.  a Phase-Field Theory of Dislocation Dynamics, Strain Hardening , 2002 .

[13]  Christof Melcher,et al.  The Logarithmic Tail of Néel Walls , 2003 .

[14]  A. Hubert,et al.  Magnetic Domains: The Analysis of Magnetic Microstructures , 2014 .

[15]  Staude Bronstein, I. N., und Semendjajew, K. A.: Taschenbuch der Mathematik für Ingenieure und Studenten der Technischen Hochschulen. Verlag B. G. Teubner, Leipzig 1958, 548 Seiten, DM 22,50 , 1959 .

[16]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .

[17]  Robert V. Kohn,et al.  Singular Perturbation and the Energy of Folds , 2000, J. Nonlinear Sci..

[18]  Werner Mueller,et al.  Regularized determinants of Laplace-type operators, analytic surgery, and relative determinants , 2004 .

[19]  Ralf Kornhuber,et al.  Robust Multigrid Methods for Vector-valued Allen–Cahn Equations with Logarithmic Free Energy , 2006 .

[20]  G. Bouchitte,et al.  Un resultat de perturbations singulieres avec la norme H 1/2 , 1994 .

[21]  Robert V. Kohn,et al.  Repulsive Interaction of Néel Walls, and the Internal Length Scale of the Cross-Tie Wall , 2003, Multiscale Model. Simul..

[22]  Felix Otto Cross-over in Scaling Laws: A Simple Example from Micromagnetics , 2002 .

[23]  Adriana Garroni,et al.  Γ-Limit of a Phase-Field Model of Dislocations , 2005, SIAM J. Math. Anal..

[24]  G. Bouchitté,et al.  Phase Transition with the Line‐Tension Effect , 1998 .