Loess correlations – Between myth and reality

Abstract The correlation of loess sequences across global, hemispheric, regional and local scales is one of the most fundamental aspects to loess research. However, despite recent progress in stratigraphic and chronometric methods, the correlation of many loess sequences is often still based on untested assumptions over loess deposition, preservation, soil type and age. As such, the aim of this overview is to provide an adequate framework for evaluation of the accuracy of loess correlations applied on different temporal and spatial scales across Eurasia. This opens up possibilities for detailed temporal and spatial environmental reconstructions across the huge loess provinces of the Eurasia and provides a framework for future extension of this to North America. Additionally, we evaluate the potential development of appropriate sub-millennial scale loess correlations, as well as essentially important chronological approaches for establishing valid correlations between different loess records, such as current improvements in tephrochronology, 14C and luminescence dating techniques.

[1]  W. Broecker,et al.  High-resolution climate records from the North Atlantic during the last interglacial , 1994, Nature.

[2]  S. Weiner,et al.  Structural Characterization of Charcoal Exposed to High and Low Ph: Implications for 14C Sample Preparation and Charcoal Preservation , 2008, Radiocarbon.

[3]  É. Verrecchia,et al.  Small scale secondary CaCO3 accumulations in selected sections of the European loess belt. Morphological forms and potential for paleoenvironmental reconstruction , 1997 .

[4]  David S. G. Thomas,et al.  Reinterpreting climate proxy records from late Quaternary Chinese loess : A detailed OSL investigation , 2007 .

[5]  D. Froese,et al.  Old Crow tephra across eastern Beringia: a single cataclysmic eruption at the close of Marine Isotope Stage 6 , 2011 .

[6]  G. Kukla Loess stratigraphy in central China , 1987 .

[7]  Alexander A. Prokopenko,et al.  Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia , 2005 .

[8]  R. E. Hughes,et al.  Correlation of climate cycles in middle Mississippi Valley loess and Greenland ice , 2003 .

[9]  P. Sümegi,et al.  Quatermalacological analyses for modeling of the Upper Weichselian palaeoenvironmental changes in the Carpathian Basin , 2002 .

[10]  Huayu Lu,et al.  An erosional hiatus in Chinese loess sequences revealed by closely spaced optical dating , 2006 .

[11]  S. McLaren,et al.  Palaeoenvironment and geoconservation of mammoths from the Nosak loess–palaeosol sequence (Drmno, northeastern Serbia): Initial results and perspectives , 2014 .

[12]  J. Vandenberghe,et al.  Dust supply from river floodplains: the case of the lower Huang He (Yellow River) recorded in a loess–palaeosol sequence from the Mangshan Plateau , 2009 .

[13]  W. McCoy,et al.  Aminostratigraphic Evaluation of Conflicting Age Estimates for the "Young Loess" of Hungary , 1995, Quaternary Research.

[14]  N. Wu,et al.  Time-Transgressive Nature of the Magnetic Susceptibility Record across the Chinese Loess Plateau at the Pleistocene/Holocene Transition , 2015, PloS one.

[15]  J. Kovács,et al.  AMS 14C and OSL/IRSL dating of the Dunaszekcső loess sequence (Hungary): chronology for 20 to 150 ka and implications for establishing reliable age–depth models for the last 40 ka , 2014 .

[16]  A. Bronger Correlation of loess–paleosol sequences in East and Central Asia with SE Central Europe: towards a continental Quaternary pedostratigraphy and paleoclimatic history , 2003 .

[17]  D. Lowe Tephrochronology and its application: A review , 2011 .

[18]  J. McKean,et al.  Soil transport driven by biological processes over millennial time scales , 2002 .

[19]  F. Sirocko,et al.  A late Eemian aridity pulse in central Europe during the last glacial inception , 2005, Nature.

[20]  A. Furusawa,et al.  Detection and correlation of widespread cryptotephras in middle Pleistocene loess in NE Japan using cummingtonite geochemistry , 2012 .

[21]  F. Sirocko,et al.  The ELSA-Vegetation-Stack: reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar sediments of the last 60,000 years , 2016 .

[22]  M. Loutre,et al.  An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120--800 ka , 2012 .

[23]  M. Kehl,et al.  The progressive evolution of a continental climate in southeast-central European lowlands during the Middle Pleistocene recorded in loess paleosol sequences , 2013 .

[24]  K. Fitzsimmons,et al.  Multi-method luminescence investigations on quartz grains of different sizes extracted from a loess section in Southeast Romania interbedding the Campanian Ignimbrite ash layer , 2014 .

[25]  K. Pearson IV. Contributions to the mathematical theory of evolution. III. Regression, heredity, and panmixia , 1896, Proceedings of the Royal Society of London.

[26]  E. Wild,et al.  14C Dating of Humic Acids from Bronze and Iron Age Plant Remains from the Eastern Mediterranean , 2013, Radiocarbon.

[27]  A. Carroll,et al.  Lacustrine 87 Sr/ 86 Sr as a tracer to reconstruct Milankovitch forcing of the Eocene hydrologic cycle , 2016 .

[28]  Thomas Stevens,et al.  Optically stimulated luminescence dating as a tool for calculating sedimentation rates in Chinese loess: comparisons with grain‐size records , 2009 .

[29]  S. Weiner,et al.  Modern and fossil charcoal: aspects of structure and diagenesis , 2006 .

[30]  F. Oldfield,et al.  Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability , 2012, Nature.

[31]  P. Ascough,et al.  Alkali extraction of archaeological and geological charcoal: evidence for diagenetic degradation and formation of humic acids , 2011 .

[32]  J. Lowe,et al.  An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group , 1998 .

[33]  F. Lehmkuhl,et al.  Millennial scale climate oscillations recorded in the Lower Danube loess over the last glacial period , 2016, Palaeogeography, Palaeoclimatology, Palaeoecology.

[34]  W. Schirmer Rhine loess at Schwalbenberg II - MIS 4 and 3 , 2011 .

[35]  L. Zöller,et al.  175 years of loess research in Germany—long records and “unconformities” , 2001 .

[36]  J. Luck,et al.  Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation. , 2002 .

[37]  A. Murray,et al.  A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments , 2012 .

[38]  S. Marković,et al.  An introduction to the Middle and Upper Pleistocene loess–paleosol sequence at Ruma brickyard, Vojvodina, Serbia , 2006 .

[39]  J. Southon,et al.  Stepped-Combustion 14C Dating of Sediment: A Comparison with Established Techniques , 2001, Radiocarbon.

[40]  E. Horvath Marker horizons in the loesses of the Carpathian Basin , 2001 .

[41]  S. Marković,et al.  Chronology of the Last Climatic Cycle (Upper Pleistocene) of the Surduk loess sequence, Vojvodina, Serbia , 2008 .

[42]  C. Ramsey,et al.  Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k , 2012 .

[43]  J. Beget,et al.  Pedogenic destruction of ferrimagnetics in Alaskan loess deposits , 2001 .

[44]  M. Frechen,et al.  Luminescence and amino acid racemization chronology of the loess–paleosol sequence at Süttő, Hungary , 2009 .

[45]  N. J. Shackleton,et al.  The δ 18O spectrum of oceanic deep water over a five-decade band , 1990 .

[46]  M. Pécsi Loess is not just the accumulation of dust , 1990 .

[47]  A. Wintle,et al.  On natural and laboratory generated dose response curves for quartz of different grain sizes from Romanian loess , 2013 .

[48]  G. Goodfriend,et al.  Limestone and the problem of radiocarbon dating of land-snail shell carbonate , 1983 .

[49]  J. Vandenberghe The relation between climate and river processes, landforms and deposits during the Quaternary , 2002 .

[50]  B. Glaser,et al.  Middle and Late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia , 2009 .

[51]  S. Harlan,et al.  Chronology and provenance of last-glacial (peoria) loess in western iowa and paleoclimatic implications , 2013, Quaternary Research.

[52]  Momčilo Gavrilov,et al.  Relating the Astronomical Timescale to the Loess-Paleosol Sequences in Vojvodina, Northern Serbia , 2012 .

[53]  M. Frechen,et al.  The geochronology of the “Gorjanović loess section” in Vukovar, Croatia , 2011 .

[54]  A. Wintle,et al.  Thermally transferred luminescence in fine-grained quartz from Chinese loess : Basic observations , 2006 .

[55]  D. Muhs The geologic records of dust in the Quaternary , 2013 .

[56]  A. Murray,et al.  Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts , 2008 .

[57]  L. Hinnov,et al.  Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy , 2014 .

[58]  M. Prins,et al.  Glacial and interglacial eolian dust dispersal patterns across the Chinese Loess Plateau inferred from decomposed loess grain‐size records , 2007 .

[59]  F. Lehmkuhl,et al.  Patterns and timing of loess-paleosol transitions in Eurasia: Constraints for paleoclimate studies , 2018 .

[60]  B. Terhorst,et al.  An isotopic study of a late Quaternary loess-paleosol sequence in SW Germany , 2004 .

[61]  J. Kovács,et al.  Coupled European and Greenland last glacial dust activity driven by North Atlantic climate , 2017, Proceedings of the National Academy of Sciences.

[62]  R. V. Ruhe Relations of the properties of Wisconsin loess to topography in western Iowa , 1954 .

[63]  C. Cosma,et al.  Optical dating of Romanian loess: A comparison between silt-sized and sand-sized quartz , 2011 .

[64]  J. Quade,et al.  Reliable Late-Pleistocene Stratigraphic Ages and Shorter Groundwater Travel Times from14C in Fossil Snails from the Southern Great Basin , 1997, Quaternary Research.

[65]  G. Kovács,et al.  Biopores and root features as new tools for improving paleoecological understanding of terrestrial sediment-paleosol sequences , 2014 .

[66]  J. Vandenberghe,et al.  Contrasting dust supply patterns across the north-western Chinese Loess Plateau during the last glacial-interglacial cycle , 2011 .

[67]  S. Marković,et al.  Palaeoclimate record in the Late Pleistocene loess-paleosol sequence at Miseluk (Vojvodina, Serbia) , 2004 .

[68]  M. Jovanović,et al.  Loess in the Vojvodina region (Northern Serbia): an essential link between European and Asian Pleistocene environments , 2012, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[69]  Xiaoqiang Li,et al.  Past changes in the vegetation density of the Chinese Loess Plateau revealed by variations in the size of Artemisia pollen grains , 2016 .

[70]  O. Moine,et al.  High-resolution record of the last climatic cycle in the southern Carpathian Basin (Surduk, Vojvodina, Serbia) , 2009 .

[71]  Dickson Cunningham,et al.  Magnetic and geochemical characteristics of Gobi Desert surface sediments: Implications for provenance of the Chinese Loess Plateau , 2009 .

[72]  N. Porat,et al.  On the importance of grain size in luminescence dating using quartz , 2017 .

[73]  Huayu Lu,et al.  An abrupt shift in dust source on the Chinese Loess Plateau revealed through high sampling resolution OSL dating , 2013 .

[74]  A. Wintle,et al.  Anomalous Fading of Thermo-luminescence in Mineral Samples , 1973, Nature.

[75]  S. Forman,et al.  Evaluating a SAR TT-OSL protocol for dating fine-grained quartz within Late Pleistocene loess deposits in the Missouri and Mississippi river valleys, United States , 2012 .

[76]  Adriana Sima,et al.  Link between European and North Atlantic abrupt climate changes over the last glaciation , 2007 .

[77]  North Greenland Ice Core Project members High-resolution record of Northern Hemisphere climate extending into the last interglacial period , 2004 .

[78]  Michael E. Evans,et al.  A magnetic investigation of a Late Quaternary loess/palaeosol record in Siberia , 2002 .

[79]  A. Wintle,et al.  Last Glacial loess in the conterminous USA , 2003 .

[80]  W. Schirmer Late Pleistocene loess of the Lower Rhine , 2016 .

[81]  C. Haynes,et al.  Radiocarbon dating of minute gastropods and new constraints on the timing of late Quaternary spring-discharge deposits in southern Arizona, USA , 2004 .

[82]  D. Heslop,et al.  A new astronomical timescale for the loess deposits of Northern China , 2000 .

[83]  Pieter Vermeesch,et al.  Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment , 2015, Nature Communications.

[84]  M. Storey,et al.  Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records , 2012, Proceedings of the National Academy of Sciences.

[85]  Manfred Frechen,et al.  Loess in Europe: mass accumulation rates during the Last Glacial Period , 2003 .

[86]  M. Frechen,et al.  Malacological and sedimentological evidence for “warm” glacial climate from the Irig loess sequence, Vojvodina, Serbia , 2007 .

[87]  Sandy P. Harrison,et al.  Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau , 2003 .

[88]  J. Vandenberghe,et al.  Site-specific variability of loess and palaeosols (Ruma, Vojvodina, northern Serbia) , 2014 .

[89]  F. Oldfield,et al.  High-resolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75 kyr , 1997 .

[90]  J. Kovács,et al.  Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review , 2010 .

[91]  W. Balsam,et al.  Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust , 2007 .

[92]  B. Li,et al.  Luminescence dating of Chinese loess beyond 130 ka using the non-fading signal from K-feldspar , 2012 .

[93]  J. Kovács,et al.  Evaluating the use of clay mineralogy, Sr-Nd isotopes and zircon U-Pb ages in tracking dust provenance: An example from loess of the Carpathian Basin , 2012 .

[94]  安芷生,et al.  THIRTY-SEVEN CLIMATIC CYCLES IN THE LAST 2.5 Ma , 1990 .

[95]  F. Lehmkuhl,et al.  Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years , 2016, Scientific Reports.

[96]  Jef Vandenberghe,et al.  Validation of wiggle matching using a multi‐proxy approach and its palaeoclimatic significance , 2009 .

[97]  S. Weiner,et al.  The Use of Raman Spectroscopy to Monitor the Removal of Humic Substances from Charcoal: Quality Control for 14C Dating of Charcoal , 2002, Radiocarbon.

[98]  G. Kukla Loess Stratigraphy of Central Europe , 1975 .

[99]  S. Marković,et al.  Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle , 2011 .

[100]  S. C. Porter,et al.  Chinese loess record of monsoon climate during the last glacial–interglacial cycle , 2001 .

[101]  I. Smalley,et al.  Pleistocene land-sea correlations , 1978, Nature.

[102]  B. Maher Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau , 2016 .

[103]  S. Clemens,et al.  Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon , 2012 .

[104]  O. Moine,et al.  The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules , 2017, Proceedings of the National Academy of Sciences.

[105]  Tobias Sprafke,et al.  Loess: Rock, sediment or soil - What is missing for its definition? , 2016 .

[106]  R. Kemp,et al.  Geochemical characterization, correlation, and optical dating of tephra in alluvial sequences of central western Argentina , 2004, Quaternary Research.

[107]  Z. Ding,et al.  Climate instability during the penultimate glaciation: Evidence from two high‐resolution loess records, China , 1999 .

[108]  P. Ascough,et al.  Variability in oxidative degradation of charcoal: Influence of production conditions and environmental exposure , 2011 .

[109]  N. Shackleton,et al.  Evaluating the success of astronomical tuning: Pitfalls of using coherence as a criterion for assessing pre‐Pleistocene timescales , 1995 .

[110]  M. Tamers Validity of Radiocarbon Dates on Terrestrial Snail Shells , 1970, American Antiquity.

[111]  D. Faust,et al.  Comparative 14C and OSL dating of loess-paleosol sequences to evaluate post-depositional contamination of n-alkane biomarkers , 2017, Quaternary Research.

[112]  G. Kukla,et al.  Pleistocene Climates in Central Europe: At least 17 Interglacials after the Olduvai Event , 1977, Quaternary Research.

[113]  Subir K. Banerjee,et al.  Luminescence investigation of loess and tephra from Halfway House section, Central Alaska , 2007 .

[114]  D. Karátson,et al.  The latest explosive eruptions of Ciomadul (Csomád) volcano, East Carpathians - A tephrostratigraphic approach for the 51-29 ka BP time interval , 2016 .

[115]  J. Jouzel,et al.  Evidence for general instability of past climate from a 250-kyr ice-core record , 1993, Nature.

[116]  A. Brauer,et al.  Tephrochronological dating of varved interglacial lake deposits from Piànico‐Sèllere (Southern Alps, Italy) to around 400 ka , 2007 .

[117]  L. Lourens,et al.  Testing astronomically tuned age models , 2015 .

[118]  S. Szidat,et al.  Radiocarbon Dating of Leaf Waxes in the Loess-Paleosol Sequence Kurtak, Central Siberia , 2017, Radiocarbon.

[119]  E. Horváth,et al.  The Bag Tephra, a widespread tephrochronological marker in Middle Europe: chemical and mineralogical investigations , 1999 .

[120]  A. Schilt,et al.  Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years , 2007, Science.

[121]  P. Antoine,et al.  Upper Pleistocene loess-palaeosol records from Northern France in the European context: Environmental background and dating of the Middle Palaeolithic , 2016 .

[122]  B. Páll‐Gergely,et al.  Charcoal and mollusc shell 14C-dating of the Dunaszekcső loess record, Hungary , 2016 .

[123]  H. Roberts The development and application of luminescence dating to loess deposits: a perspective on the past, present and future , 2008 .

[124]  S. Sedov,et al.  Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan: towards a Quaternary paleoclimatic record in Central Asia , 1998 .

[125]  J. Mason,et al.  Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, USA , 2013 .

[126]  A. Murray,et al.  Optical dating of Chinese loess using sand-sized quartz: Establishing a time frame for Late Pleistocene climate changes in the western part of the Chinese Loess Plateau , 2008 .

[127]  S. Marković,et al.  Extending the area of investigation of fine versus coarse quartz optical ages from the Lower Danube to the Carpathian Basin , 2015 .

[128]  Christian Zeeden,et al.  Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania) – Implications for dust accumulation in south-eastern Europe , 2016 .

[129]  A. Bronger Zur quartären Klima- und Landschaftsentwicklung des Karpatenbeckens auf (paläo-)pedologischer und bodengeographischer Grundlage , 1976 .

[130]  A. Lang,et al.  Development of Accurate and Reliable 14C Chronologies for Loess Deposits: Application to the Loess Sequence of Nussloch (Rhine Valley, Germany) , 2001, Radiocarbon.

[131]  A. Murray,et al.  Elevated temperature IRSL dating of loess sections in the East Eifel region of Germany , 2014 .

[132]  R. Begy,et al.  High-resolution OSL dating of the Costineşti section (Dobrogea, SE Romania) using fine and coarse quartz , 2014 .

[133]  P. Ascough,et al.  Investigation of growth responses in saprophytic fungi to charred biomass , 2010, Isotopes in environmental and health studies.

[134]  J. Kukla Correlations between loesses and deep-sea sediments , 1970 .

[135]  E. Bettis,et al.  Isotopic evidence for the diversity of late Quaternary loess in Nebraska: Glaciogenic and nonglaciogenic sources , 2008 .

[136]  Dorthe Dahl-Jensen,et al.  A 60 000 year Greenland stratigraphic ice core chronology , 2007 .

[137]  I. Smalley,et al.  Loess is [almost totally formed by] the accumulation of dust , 2011 .

[138]  Z. Ding,et al.  A 249 kyr stack of eight loess grain size records from northern China documenting millennial‐scale climate variability , 2014 .

[139]  D. Kaufman,et al.  Amino acid geochronology: Recent perspectives , 2013 .

[140]  T. Heinkele,et al.  Micromorphology and genesis of paleosols in the Luochuan loess section, China: pedostratigraphic and environmental implications , 1989 .

[141]  C. Hatté,et al.  Last interglacial‐glacial climatic cycle in loess‐palaeosol successions of north‐western France , 1999 .

[142]  Maarten Blaauw,et al.  Out of tune: the dangers of aligning proxy archives , 2012 .

[143]  Z. An,et al.  Episodic gullying and paleomonsoon cycles on the Chinese Loess Plateau , 2005, Quaternary Research.

[144]  W. McCoy,et al.  Amino acid geochronology applied to the correlation and dating of central european loess deposits , 1995 .

[145]  A. Zhisheng,et al.  NEW ABSOLUTE TIME SCALE FOR THE QUATERNARY CLIMATE IN THE CHINESE LOESS REGION BY GRAIN-SIZE ANALYSIS , 1997 .

[146]  F. Heller,et al.  Magnetism of Chinese loess deposits , 1984 .

[147]  David S. G. Thomas,et al.  Optical dating of abrupt shifts in the late Pleistocene East Asian monsoon , 2008 .

[148]  A. Murray,et al.  Luminescence dating of the Stratzing loess profile (Austria) – Testing the potential of an elevated temperature post-IR IRSL protocol , 2011 .

[149]  Thomas Stevens,et al.  Mass accumulation rate and monsoon records from Xifeng, Chinese Loess Plateau, based on a luminescence age model , 2016 .

[150]  J. Vandenberghe Multi-proxy analysis: a reflection on essence and potential pitfalls , 2012, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[151]  W. Broecker,et al.  Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period , 1992, Nature.

[152]  R. Sulpizio,et al.  First tephrostratigraphic results of the DEEP site record from Lake Ohrid (Macedonia and Albania) , 2016 .

[153]  Zhongping Lai,et al.  Natural and laboratory TT-OSL dose response curves: Testing the lifetime of the TT-OSL signal in nature , 2016 .

[154]  Xiaohua Shao,et al.  Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years , 2008, Nature.

[155]  G. Kukla,et al.  The last million years recorded at the Stari Slankamen (Northern Serbia) loess-palaeosol sequence: revised chronostratigraphy and long-term environmental trends , 2011 .

[156]  B. Otto‐Bliesner,et al.  Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing , 2013 .

[157]  K. Fitzsimmons,et al.  The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution , 2013, PloS one.

[158]  W. McCoy,et al.  Towards a revised chronostratigraphy of loess in Austria with respect to key sections in the Czech Republic and in Hungary , 1994 .

[159]  Manfred Frechen,et al.  Atmospheric circulation patterns in Central and Eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records , 2011 .

[160]  T. Lukić,et al.  Time-scale and astronomical forcing of Serbian loess-paleosol sequences , 2014 .

[161]  C. Cosma,et al.  SAR-OSL dating of different grain-sized quartz from a sedimentary section in southern Romania interbedding the Campanian Ignimbrite/Y5 ash layer , 2012 .

[162]  C. Spearman The proof and measurement of association between two things. By C. Spearman, 1904. , 1987, The American journal of psychology.

[163]  Pieter Vermeesch,et al.  Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau , 2013 .

[164]  J. Nekola,et al.  Radiocarbon dating of small terrestrial gastropod shells in North America , 2010 .

[165]  G. A. Wang,et al.  The loess record in southern Tajikistan and correlation with Chinese loess , 2002 .

[166]  J. Nekola,et al.  Assessing Open-System Behavior of 14C in Terrestrial Gastropod Shells , 2011, Radiocarbon.

[167]  G. Kukla,et al.  Plio-Pleistocene megacycles: record of climate and tectonics , 1996 .

[168]  Y. Kuzyakov,et al.  Carbonate rhizoliths in loess and their implications for paleoenvironmental reconstruction revealed by isotopic composition: δ13C, 14C , 2011 .

[169]  F. Lehmkuhl,et al.  Loess-paleosol sequences at the northern European loess belt in Germany: Distribution, geomorphology and stratigraphy , 2016 .

[170]  Manfred Mudelsee,et al.  Estimating Pearson's Correlation Coefficient with Bootstrap Confidence Interval from Serially Dependent Time Series , 2003 .

[171]  Christopher E. Miller,et al.  The loess-palaeosol sequence of Datthausen, SW Germany: Characteristics, chronology, and implications for the use of the Lohne Soil as a marker soil , 2016 .

[172]  J. Plicht,et al.  The age of the Hengelo interstadial revisited , 2016 .

[173]  R. Cioni,et al.  The major and trace element glass compositions of the productive Mediterranean volcanic sources: tools for correlating distal tephra layers in and around Europe , 2015 .

[174]  J. Kok,et al.  The physics of wind-blown loess: Implications for grain size proxy interpretations in Quaternary paleoclimate studies , 2016 .

[175]  F. Lehmkuhl,et al.  Luminescence dating of loess deposits from the Remagen-Schwalbenberg site, Western Germany , 2015 .

[176]  David B. Stone,et al.  Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary , 1990 .

[177]  M. Rubin,et al.  On the Validity of Radiocarbon Dates from Snail Shells , 1963, The Journal of Geology.

[178]  M. Mudelsee,et al.  More accurate, calibrated bootstrap confidence intervals for estimating the correlation between two time series , 2014, Mathematical Geosciences.

[179]  J. Vandenberghe,et al.  (www.interscience.wiley.com) DOI: 10.1002/jqs.1124 Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia , 2022 .

[180]  A. Wintle,et al.  Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska , 2003, Quaternary Research.

[181]  R. Edwards,et al.  North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems , 2015, Nature Communications.

[182]  S. Pirson,et al.  The Late Pleistocene loess-palaeosol sequence of Middle Belgium , 2016 .

[183]  Ralf Gertisser,et al.  The ‘Roxolany Tephra’ (Ukraine) − new evidence for an origin from Ciomadul volcano, East Carpathians , 2016 .

[184]  F. Lehmkuhl,et al.  Danube loess stratigraphy : Towards a pan-European loess stratigraphic model , 2015 .

[185]  Denis-Didier Rousseau,et al.  High-resolution record of the last Interglacial–glacial cycle in the Nussloch loess–palaeosol sequences, Upper Rhine Area, Germany , 2001 .

[186]  C. Pachiaudi,et al.  Conditions Involved in Dating Terrestrial Shells , 1980, Radiocarbon.

[187]  S. Clemens,et al.  Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau , 2006 .

[188]  Zhongping Lai Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol , 2010 .

[189]  J. Mason,et al.  Sources and paleoclimatic significance of Holocene Bignell Loess, central Great Plains, USA , 2003, Quaternary Research.

[190]  Liping Zhou,et al.  Loess Deposition in Asia: Its Initiation and Development Before and During the Quaternary , 2008 .

[191]  R. V. Ruhe Quaternary landscapes in Iowa , 1969 .

[192]  W. Ebisuzaki A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated , 1997 .

[193]  F. Heller,et al.  Magnetostratigraphical dating of loess deposits in China , 1982, Nature.

[194]  H. Fischer,et al.  A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy , 2014 .

[195]  A. Wintle,et al.  Improving the TT-OSL SAR protocol through source trap characterisation , 2010 .

[196]  J. Mason,et al.  Loess record of the Pleistocene-Holocene transition on the northern and central Great Plains, USA , 2008 .

[197]  C. McIntyre,et al.  On the stratigraphic integrity of leaf-wax biomarkers in loess paleosols , 2013 .

[198]  S. Savić,et al.  Paleoclimate record in the Upper Pleistocene loess-paleosol sequence at Petrovaradin brickyard (Vojvodina, Serbia) , 2005 .

[199]  F. Parrenin,et al.  The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years , 2012 .

[200]  B. Kromer,et al.  Multi-proxy dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany , 2013 .

[201]  C. Hatté,et al.  LOESS RECORDS | Europe , 2007 .

[202]  F. Lehmkuhl,et al.  Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for Modern Human dispersal , 2017, Scientific Reports.

[203]  I. Smalley,et al.  The INQUA Loess Commission as a Central European Enterprise , 2010 .

[204]  K. Pye Aeolian dust and dust deposits , 1987 .

[205]  G. Kukla,et al.  The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China , 1990 .

[206]  R. Edwards,et al.  The climatic cyclicity in semiarid‐arid central Asia over the past 500,000 years , 2012 .

[207]  Frank Sirocko,et al.  A continuous high‐resolution dust record for the reconstruction of wind systems in central Europe (Eifel, Western Germany) over the past 133 ka , 2009 .

[208]  F. Zeuner Loess and Palaeolithic Chronology , 1956, Proceedings of the Prehistoric Society.

[209]  G. Kukla Pleistocene land—sea correlations I. Europe , 1977 .

[210]  Y. Kuzyakov,et al.  Rhizoliths in loess - evidence for post-sedimentary incorporation of root-derived organic matter in terrestrial sediments as assessed from molecular proxies , 2010 .

[211]  A. Murray,et al.  Towards development of a broadly-applicable SAR TT-OSL dating protocol for quartz , 2009 .

[212]  H. Pälike,et al.  The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends , 2006 .

[213]  E. Bettis,et al.  Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells , 2013 .

[214]  I. Jefferson,et al.  Rivers and loess: The significance of long river transportation in the complex event-sequence approach to loess deposit formation , 2009 .

[215]  Jimin Sun,et al.  Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau , 2002 .

[216]  J Schwander,et al.  High-resolution record of Northern Hemisphere climate extending into the last interglacial period , 2004, Nature.

[217]  A. Murray,et al.  Dating Middle Pleistocene loess from Stari Slankamen (Vojvodina, Serbia) — Limitations imposed by the saturation behaviour of an elevated temperature IRSL signal , 2014 .

[218]  N. Shackleton,et al.  The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal , 1994 .

[219]  J. Mason,et al.  Isolation of the syndepositional magnetic susceptibility signals from loessic paleosols of China , 2006 .

[220]  O. Moine,et al.  The impact of Dansgaard–Oeschger cycles on the loessic environment and malacofauna of Nussloch (Germany) during the Upper Weichselian , 2008, Quaternary Research.

[221]  P. Abbott,et al.  Volcanism and the Greenland ice-cores: the tephra record , 2012 .

[222]  H. Roberts Testing Post-IR IRSL protocols for minimising fading in feldspars, using Alaskan loess with independent chronological control , 2012 .

[223]  A. Wintle Thermoluminescence dating of late Devensian loesses in southern England , 1981, Nature.

[224]  B. Marshall,et al.  Origin and paleoclimatic significance of late Quaternary loess in Nebraska: Evidence from stratigraphy, chronology, sedimentology, and geochemistry , 2008 .

[225]  G. Barta Secondary carbonates in loess-paleosoil sequences: a general review , 2011 .

[226]  M. Jain Extending the dose range: Probing deep traps in quartz with 3.06 eV photons , 2009 .

[227]  Dongsheng Liu,et al.  Loess and the environment , 1985 .

[228]  F. Jiang,et al.  Ultra-high rates of loess sedimentation at Zhengzhou since Stage 7: Implication for the Yellow River erosion of the Sanmen Gorge , 2007 .

[229]  Sheng‐Hua Li,et al.  Studies of thermal stability of charges associated with thermal transfer of OSL from quartz , 2006 .

[230]  S. Stokes,et al.  Dating volcanic and related sediments by luminescence methods: a review , 2003 .

[231]  Jakob Wallinga,et al.  Violet stimulated luminescence dating of quartz from Luochuan (Chinese loess plateau) : Agreement with independent chronology up to ∼600 ka , 2016 .

[232]  G. Kukla Loess stratigraphy in central China , 1987 .

[233]  G. Rolandi,et al.  New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy) , 2001 .

[234]  O. Moine,et al.  High-resolution record of the environmental response to climatic variations during the Last Interglacial-Glacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Věstonice (Czech Republic) , 2013 .

[235]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[236]  G. Kukla,et al.  Pleistocene climates in China dated by magnetic susceptibility , 1988 .

[237]  D. Gavin Forest soil disturbance intervals inferred from soil charcoal radiocarbon dates , 2003 .

[238]  Tobias Sprafke,et al.  The history of Danube loess research , 2016 .

[239]  David S. G. Thomas,et al.  Sedimentation and diagenesis of Chinese loess: Implications for the preservation of continuous, high-resolution climate records , 2006 .

[240]  A. Zhisheng,et al.  Correlation between climate events in the North Atlantic and China during the last glaciation , 1995, Nature.