Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter's primary science phase

[1] The part of the Compact Reconnaissance Imaging Spectrometer (CRISM) for Mars investigation conducted during the Mars Reconnaissance Orbiter's (MRO's) primary science phase was a comprehensive investigation of past aqueous environments, structure of the planet's crust, past climate, and current meteorology. The measurements to implement this investigation include over 9500 targeted observations of surface features taken at spatial resolutions of better than 40 m/pixel, monitoring of seasonal variations in atmospheric aerosols and trace gases, and acquisition of a 200 m/pixel map covering over 55% of Mars in 72 selected wavelengths under conditions of relatively low atmospheric opacity. Key results from these data include recognition of a diversity of aqueous mineral-containing deposits, discovery of a widespread distribution of phyllosilicates in early to middle Noachian units, the first definitive detection of carbonates in bedrock, new constraints on the sequence of events that formed Hesperian-aged, sulfate-rich layered deposits, characterization of seasonal polar processes, and monitoring of the 2007 global dust event. Here we describe CRISM's science investigations during the Primary Science Phase, the data sets that were collected and their calibration and uncertainties, and how they have been processed and made available to the scientific community. We also describe the ongoing investigation during MRO's extended science phase.

[1]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[2]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[3]  M. M. Osterloo,et al.  Chloride-Bearing Materials in the Southern Highlands of Mars , 2008, Science.

[4]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[5]  J. K. Crowley,et al.  Discovery of the Acid-Sulfate Mineral Alunite in Terra Sirenum, Mars, Using MRO CRISM: Possible Evidence for Acid-Saline Lacustrine Deposits? , 2008 .

[6]  R. Morris,et al.  Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling , 2009 .

[7]  S. Smrekar,et al.  An overview of the Mars Reconnaissance Orbiter (MRO) science mission , 2007 .

[8]  Richard C. Puetter,et al.  Infrared Spectra of Deimos (1-13 μm) and Phobos (3-13 μm) , 2007 .

[9]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[10]  David A. Paige,et al.  Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions , 2007 .

[11]  Raymond E. Arvidson,et al.  A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter , 2009 .

[12]  G. Swayze,et al.  Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate , 2009 .

[13]  William H. Farrand,et al.  Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate , 2008 .

[14]  C. Weitz,et al.  Opaline silica in young deposits on Mars , 2008 .

[15]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[16]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[17]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[18]  S. Squyres,et al.  Diverse aqueous environments on ancient Mars revealed in the southern highlands , 2009 .

[19]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[20]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[21]  Raymond E. Arvidson,et al.  Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer , 2009 .

[22]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[23]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[24]  Scott L. Murchie,et al.  Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide , 2009 .

[25]  R. Phillips,et al.  SHARAD sounding radar on the Mars Reconnaissance Orbiter , 2007 .

[26]  M. J. Wolff,et al.  CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance , 2007 .

[27]  S. Murchie,et al.  Exotic Processes within the Cryptic Region of Mars: A New Method for Near Real-Time Estimates of Wind Direction , 2008 .

[28]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[29]  Raymond E. Arvidson,et al.  MRO/CRISM Retrieval of Surface Lambert Albedos for Multispectral Mapping of Mars With DISORT-Based Radiative Transfer Modeling: Phase 1—Using Historical Climatology for Temperatures, Aerosol Optical Depths, and Atmospheric Pressures , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  R. Morris,et al.  Hydrated Sulfate Deposits Detected Within Schiaparelli Crater, Mars , 2009 .

[31]  Jean-Pierre Bibring,et al.  Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars , 2008, Science.

[32]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[33]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[34]  M. Zuber,et al.  Meridiani Planum and the global hydrology of Mars , 2007, Nature.

[35]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[36]  R. Green,et al.  Compact Reconnaissance Imaging Spectrometer for Mars observations of northern Martian latitudes in summer , 2009 .

[37]  M. Malin,et al.  Mars Observer camera , 1992 .

[38]  V. Hamilton,et al.  Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars , 2008 .

[39]  S. Murchie,et al.  Testing evidence of recent hydration state change in sulfates on Mars , 2009 .

[40]  G. Danielson,et al.  Mars Observer Camera , 1987 .

[41]  John F. Mustard,et al.  Clay minerals in delta deposits and organic preservation potential on Mars , 2008 .

[42]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity , 2006 .