Determination of beryllium in urine by graphite-furnace atomic absorption spectrometry

[1]  D. L. Styris,et al.  Mechanisms controlling graphite furnace atomization and stabilization of beryllium , 1987 .

[2]  M. Grognard Estimation of beryllium concentration in the standard reference material BCR 176 by STPF-Zeeman AAS after lithium metaborate fusion , 1987 .

[3]  D. Paschal,et al.  Determination of beryllium in urine with electrothermal atomic absorption using the L'vov platform and matrix modification , 1986 .

[4]  M. Bettinelli,et al.  Determination of trace metals in sediment standard reference materials by graphite-furnace atomic absorption spectrometry with a stabilized temperature platform , 1986 .

[5]  X. Shan,et al.  Determination of gallium in sediment, coal, coal fly ash, and botanical samples by graphite furnace atomic absorption spectrometry using nickel matrix modification , 1985 .

[6]  T. Yoshino,et al.  Electrothermal atomic absorption spectrometric determination of traces of chromium, nickel, iron and beryllium in aluminum and its alloys without preliminary separation , 1984 .

[7]  W. Slavin,et al.  The Determination of Trace Elements in Natural Waters Using the Stabilized Temperature Platform Furnace , 1983 .

[8]  P. Lågas Determination of beryllium, barium, vanadium and some other elements in water by atomic absorption spectrometry with electrothermal atomization , 1978 .

[9]  J. Overend The relative dipole strengths of the 00°1 → 10°0 and 00°1 → 02°0 laser transitions in CS2 and CO2 , 1977 .

[10]  R. Godden,et al.  A method for the formation of pyrolytic graphite coatings and enhancement by calcium addition techniques for graphite rod flameless atomic absorption s , 1975 .

[11]  W. Campbell,et al.  Atom-formation processes in carbon-furnace atomizers used in atomic-absorption spectrometry. , 1974, Talanta.

[12]  A. G. Gaydon,et al.  The identification of molecular spectra , 1950 .