On the Power of Unambiguity in Alternating Machines

Recently, the property of unambiguity in alternating Turing machines has received considerable attention in the context of analyzing globally-unique games by Aida et al. [1] and in the design of efficient protocols involving globally-unique games by Crâsmaru et al. [7].

[1]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[2]  Osamu Watanabe,et al.  Games with Uniqueness Properties , 2003, Theory of Computing Systems.

[3]  Rahul Tripathi,et al.  On the Power of Unambiguity in Alternating Machines , 2007, Theory of Computing Systems.

[4]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[5]  Rolf Niedermeier,et al.  Unambiguous Computations and Locally Definable Acceptance Types , 1998, Theor. Comput. Sci..

[6]  Timothy J. Long,et al.  UP and the low and high hierarchies: A relativized separation , 1992, Mathematical systems theory.

[7]  Peter Rossmanith,et al.  Unambiguous polynomial hierarchies and exponential size , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[8]  Ker-I Ko Separating the Low and High Hierarchies by Oracles , 1991, Inf. Comput..

[9]  Juris Hartmanis,et al.  The Boolean Hierarchy II: Applications , 1989, SIAM J. Comput..

[10]  Lane A. Hemachandra,et al.  A complexity theory for feasible closure properties , 1993 .

[11]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[12]  Vikraman Arvind,et al.  Graph isomorphism is in SPP , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[13]  Jörg Rothe,et al.  Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets , 1997, SIAM J. Comput..

[14]  Richard Beigel,et al.  On the relativized power of additional accepting paths , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[15]  Ker-I Ko Relativized Polynomial Time Hierarchies Having Exactly K Levels , 1989, SIAM J. Comput..

[16]  Pierluigi Crescenzi,et al.  Sperner's lemma and robust machines , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[17]  Timothy J. Long,et al.  The Extended Low Hierarchy is an Infinite Hierarchy , 1994, SIAM J. Comput..

[18]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[19]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[20]  Juris Hartmanis,et al.  Robust Machines Accept Easy Sets , 1990, Theor. Comput. Sci..

[21]  Lance Fortnow Relativized Worlds with an Infinite Hierarchy , 1999, Inf. Process. Lett..

[22]  Ker-I Ko,et al.  On Some Natural Complete Operators , 1985, Theor. Comput. Sci..

[23]  Andreas Blass,et al.  On the Unique Satisfiability Problem , 1982, Inf. Control..

[24]  Christian Glaßer,et al.  A Protocol for Serializing Unique Strategies , 2004, MFCS.

[25]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).