Synthese und Reaktionsverhalten 2′‐substituierter Isoflavone

Synthesis and Behaviour of Isoflavones Substituted in 2′-Position The protected chalcones 6–8 prepared from acetophenone and benzaldehydes rearranged to the dimethoxypropanone derivatives 9–11 in the presence of trimethyl orthoformate by Tl(NO3)3. 3 H2O. These compounds could be cyclized to the isoflavones 12–14 in high yields (Scheme 2). The conversion of these isoflavones to the corresponding isoflavanes (model compounds of the phytoalexin glabridin; see Scheme 1) was the main goal of this work. Hydrogenation of 13 and 14 gave the isoflavanes 15 and 16, respectively and their deprotection the racemic natural product 4′-O-demethylvestitol (17). Reduction of 13 and 14 yielded different compounds depending on the reducing agent (Scheme 3). The saturated alcohols 20–23 could be obtained with NaBH4 or LiBH4. They were transferred into the racemic 9-O-demethylmedicarpin (24) and haginin D (25) under acidic conditions. The ketones 26–28 (Scheme 4) were obtained in high yields by reduction of 12–14 with DIBAH. Deprotection of 26 yielded the racemic 2,3-dihydrodaidzein (29). Compounds 13 and 27 as well as 20 and 22 showed different behaviour under reduction conditions with Li in liquid ammonia. An efficient method for the introduction of the MeOCH2O and the MeOCH2CH2OCH2 protecting groups into hydroxylated benzaldehydes and acetophenones (Scheme 5) is described. The appropriate experimental conditions depend on the regioselectivity and on the number of the protected groups. The protected aldehydes, especially those with a protected ortho OH group, show an extraordinary ionization behaviour in chemical-ionization mass spectrometry (isobutane; Scheme 6).

[1]  A. Nishinaga,et al.  Cobalt schiff base complex promoted retro-claisen reaction of 1-(2-hydroxyphenyl)-3-phenyl-1,3-propanediones and flavone formation , 1990 .

[2]  鉄理 水越,et al.  コンピュータ化したENG(Computerized ENG)の試み , 1989 .

[3]  K. Mori,et al.  Syntheses of Pterocarpans, II. Synthesis of Both the Enantiomers of Pisatin , 1989 .

[4]  M. Iinuma,et al.  Natural occurrence and synthesis of 2′-oxygenated flavones, flavonols, flavanones and chalcones , 1989 .

[5]  K. Mori,et al.  Syntheses of pterocarans, I. Synthesis of both the enantiomers of pterocarpin , 1988 .

[6]  Mária Kajtár-Peredy,et al.  Synthese der natürlichen Isoflav‐3‐ene Haginin A, B und D , 1988 .

[7]  N. Nayyar,et al.  Synthesis of racemic sativanone and racemic dihydrodaidzein , 1987 .

[8]  F. Visser,et al.  Selectivity of the hydrogenation of 2',4',7-tribenzyloxyisoflavone , 1987 .

[9]  D. A. Whiting,et al.  Synthesis of the phytoalexin (±)-phaseollin: 3-phenylthiochromans as masked 2H-chromenes and o-prenyl phenols , 1987 .

[10]  Y. Nakajima,et al.  Convenient synthesis of 3-aminocoumarin derivatives by the condensation of 1,4-diacetyl-or 3-substituent-2,5-piperazinediones with various salicylaldehyde derivatives. , 1986 .

[11]  A. Liepa A synthesis of 2,4-dihydroxyisoflavans and 2-Hydroxyisoflav-3-enes: Versatile precursors to isoflavanoids , 1984 .

[12]  S. Ayabe,et al.  Studies on plant tissue cultures. Part 36. Biosynthesis of a retrochalcone, echinatin, and other flavonoids in the cultured cells of Glycyrrhiza echinata. A new route to a chalcone with transposed A- and B-rings , 1982 .

[13]  P. Dewick,et al.  Biosynthesis of the phytoalexin phaseollin in Phaseolus vulgaris , 1982 .

[14]  J. Ingham Induced Isoflavonoids of Erythrina sandwicensis , 1980 .

[15]  T. Miyase,et al.  Studies on the constituentes of Lespedeza cyrtobotrya Miq. I. The structures of a new chalcone and two new isoflav-3-ens. , 1980 .

[16]  M. D. Woodward Phaseollin formation and metabolism in Phaseolus vulgaris , 1980 .

[17]  P. Dewick,et al.  Isolation of a new isoflavan phytoalexin from two Lotus species , 1980 .

[18]  K. R. Markham,et al.  Identification of the Erythrina phytoalexin cristacarpin and a note on the chirality of other 6a-hydroxypterocarpans , 1980 .

[19]  J. Ingham Isoflavonoid Phytoalexins of Yam Bean (Pachyrrhizus erosus) , 1979 .

[20]  P. Dewick,et al.  A new isoflavan phytoalexin from leaflets of Lotus hispidus , 1979 .

[21]  S. Karady,et al.  A NEW PREPARATION OF CHLOROMETHYL METHYL ETHER FREE OF BIS(CHLOROMETHYL) ETHER , 1979 .

[22]  J. Ingham Phytoalexins of Hyacinth Bean (Lablab niger) , 1977 .

[23]  P. Dewick Biosynthesis of pterocarpan phytoalexins in Trifolium pratense , 1977 .

[24]  J. Ingham Isoflavan phytoalexins from Anthyllis, lotus and Tetragonolobus , 1977 .

[25]  E. Corey,et al.  A new general method for protection of the hydroxyl function , 1976 .

[26]  J. Ingham Fungal modification of pterocarpan phytoalexins from Melilotus alba and Trifolium pratense , 1976 .

[27]  L. Farkas,et al.  Oxidative Umlagerung von Chalkonen mit Thallium(III)-nitrat, IV. Synthese des Dalpatins, Fujikinins, Glyciteins und anderer natürlicher Isoflavone , 1975 .

[28]  S. Hall,et al.  Lithium-ammonia reduction of benzyl alcohols to aromatic hydrocarbons. Improved procedure , 1975 .

[29]  S. Hall,et al.  Correction. Alkylation-Reduction of Carbonyl Systems. IV. The Convenient and Selective Synthesis of Simple and Complex Aromatic Hydrocarbons by Phenylation-Reduction of Aldehydes and Ketones. , 1975 .

[30]  A. Mckillop Applications of thallium(III) nitrate (TTN) to organic synthesis , 1975 .

[31]  S. Antus,et al.  Synthesis of sophorol, violanone, lonchocarpan, claussequinone, philenopteran, leiocalycin, and some other natural isoflavonoids by the oxidative rearrangement of chalcones with thallium(III) nitrate , 1974 .

[32]  S. Hall,et al.  Lithium-ammonia reduction of armoatic ketones to aromatic hydrocarbons , 1971 .

[33]  I. Mir,et al.  Constituents of the higher fungi. Part VI. Some analogues of hispidin , 1967 .