Martensitic transformations and shape-memory materials ☆

The authors review theoretical research on martensitic phase transformations in shape-memory materials, with emphasis on recently derived theory and predictions of interest for alloy development. Research on special lattice parameters corresponding to certain microstructures, complex crystal structures and 6M martensite, the relation of micro-scale to macro-scale deformations, ferromagnetic and ferroelectric martensites, and martensite at small scales is covered.

[1]  V. V. Kokorin,et al.  The crystal structure of thermally- and stress-induced Martensites in Ni2MnGa single crystals , 1992 .

[2]  K. Bhattacharya,et al.  THE INFLUENCE OF TEXTURE ON THE SHAPE- MEMORY EFFECT IN POLYCRYSTALS , 1998 .

[3]  K. Shimizu,et al.  Effect of magnetic fields on martensitic transformations in ferrous alloys and steels. , 1989 .

[4]  R. Sinclair,et al.  Twinless Martensite in TiNiCu Shape Memory Alloys , 1991 .

[5]  J. Ericksen Equilibrium Theory for X-ray Observations of Crystals , 1997 .

[6]  T. Pence,et al.  Structure and Thermal Stability in Titanium-Nickel Thin Films Sputtered at Elevated-Temperature on Inorganic and Polymeric Substrates , 1994 .

[7]  Shapiro,et al.  Precursor effects and premartensitic transformation in Ni2MnGa. , 1996, Physical review. B, Condensed matter.

[8]  Qingping Sun,et al.  On Deformation of A-M Interface in Single Crystal Shape Memory Alloys and Some Related Issues , 1999 .

[9]  R. James,et al.  A theory of thin films of martensitic materials with applications to microactuators , 1999 .

[10]  M. Pitteri,et al.  Generic and non-generic cubic-to-monoclinic transitions and their twins 1 1 Dedicated to Prof. I. Mu , 1998 .

[11]  Kaushik Bhattacharya,et al.  Wedge-like microstructure in martensites , 1991 .

[12]  V. V. Kokorin,et al.  Large magnetic‐field‐induced strains in Ni2MnGa single crystals , 1996 .

[13]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[14]  PREMARTENSITIC TRANSITION DRIVEN BY MAGNETOELASTIC INTERACTION IN BCC FERROMAGNETIC NI2MNGA , 1997, cond-mat/9709246.

[15]  P. J. Webster,et al.  Magnetic order and phase transformation in Ni2MnGa , 1984 .

[16]  Morris Cohen,et al.  Criterion for the action of applied stress in the martensitic transformation , 1953 .

[17]  C. M. Wayman,et al.  The formation of martensite and the mechanism of the shape memory effect in single crystals of Cu-Zn alloys , 1977 .

[18]  C. M. Wayman,et al.  New description of long period stacking order structures of martensites in β-phase alloys , 1993 .

[19]  D. Grummon,et al.  Transformational superelasticity in sputtered titanium-nickel thin films , 1995 .

[20]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[21]  C. M. Wayman,et al.  Superelasticity effects and stress-induced martensitic transformations in CuAlNi alloys , 1976 .

[22]  Antonio De Simone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[23]  Mitchell Luskin,et al.  On the computation of crystalline microstructure , 1996, Acta Numerica.

[24]  J. Christian,et al.  Martensitic transformations in titanium-tantalum alloys , 1972 .

[25]  William Pratt,et al.  Structure and Phase Transformations in Thermoelastic Ni (1−x) TiCu x ) Thin Films Prepared by D.C. Magnetron Sputtering. , 1990 .

[26]  R. James,et al.  Prediction of microstructure in monoclinic LaNbO4 by energy minimization , 1997 .

[27]  T. Totani,et al.  Magnetic anisotropy of Fe-Pd invar alloys , 1986 .

[28]  T. Shield,et al.  Microstructure in a copper—aluminium—nickel shape–memory alloy , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  C. M. Wayman,et al.  Electron microscopy of internally faulted Cu-Zn-Al martensite , 1977 .

[30]  V. V. Kokorin,et al.  Pre-martensitic state in Ni-Mn-Ga alloys , 1996 .

[31]  David Kinderlehrer,et al.  Theory of magnetostriction with applications to TbxDy1-xFe2 , 1993 .

[32]  Shuichi Miyazaki,et al.  Development of Shape Memory Alloys , 1989 .

[33]  Kaushik Bhattacharya,et al.  Comparison of the geometrically nonlinear and linear theories of martensitic transformation , 1993 .

[34]  D. Schryvers Microtwin sequences in thermoelastic NixAl100-x martensite studied by conventional and high-resolution transmission electron microscopy , 1993 .

[35]  James K. Knowles,et al.  A continuum model of a thermoelastic solid capable of undergoing phase transitions , 1993 .

[36]  N. Simha Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zirconia , 1997 .

[37]  J. Ericksen,et al.  Nilpotent energies in liquid crystal theory , 1962 .

[38]  J. Ericksen On the symmetry of deformable crystals , 1979 .

[39]  S. Kajiwara,et al.  MARTENSITIC TRANSFORMATIONS IN ULTRA-FINE PARTICLES OF METALS AND ALLOYS , 1991 .

[40]  M. Pitteri Reconciliation of local and global symmetries of crystals , 1984 .

[41]  S. Kajiwara,et al.  Electron Microscope Study of the Crystal Structure of the Martensite in a Copper-Aluminium Alloy , 1963 .

[42]  Richard D. James,et al.  A characterization of plane strain , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[43]  Chenguang Lu,et al.  IN SITU STUDY OF THE EVOLUTION OF DOMAIN STRUCTURE IN FREE-STANDING POLYCRYSTALLINE PBTIO3 THIN FILMS UNDER EXTERNAL STRESS , 1997 .

[44]  R. Kohn,et al.  Branching of twins near an austenite—twinned-martensite interface , 1992 .

[45]  R. Clifton,et al.  On pressure-shear plate impact for studying the kinetics of stress-induced phase transformations , 1992 .

[46]  Richard D. James,et al.  Magnetostriction of martensite , 1998 .

[47]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[48]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[49]  G. Zanzotto On the material symmetry group of elastic crystals and the Born Rule , 1992 .

[50]  D. Lynch,et al.  Optical properties and electronic structures of equiatomic {ital X}Ti ({ital X}=Fe, Co, and Ni) alloys , 1996 .

[51]  V. Varadan Mathematics and Control in Smart Structures , 1997 .

[52]  D. Schryvers,et al.  High resolution transmission electron microscopy study of nanoscale Ni-rich NiAl films evaporated onto NaCl and KCl , 1998 .

[53]  K. Hane Bulk and thin film microstructures in untwinned martensites , 1999 .

[54]  Elastic constants of the monoclinic 18R martensite of a CuZnAl alloy , 1993 .

[55]  Shuichi Miyazaki,et al.  The shape memory mechanism associated with the martensitic transformation in TiNi alloys—II. Variant coalescence and shape recovery , 1989 .

[56]  Robert V. Kohn,et al.  Symmetry, texture and the recoverable strain of shape-memory polycrystals , 1996 .

[57]  A. L. Roitburd,et al.  Martensitic Transformation as a Typical Phase Transformation in Solids , 1978 .

[58]  T. Shield,et al.  Symmetry and microstructure in martensites , 1998 .

[59]  T. Tadaki,et al.  Thermoelastic Nature and Crystal Structure of the Cu–Zn Martensite related to the Shape Memory , 1975 .

[60]  S. Kajiwara Theoretical Analysis of the Crystallography of the Martensitic Transformation of BCC to 9 R Close-Packed Structure , 1976 .

[61]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[62]  M. Chandrasekaran,et al.  The basal plane stacking faults in 18R martensite of copper base alloys , 1984 .

[63]  Q. Su,et al.  Martensitic transformation in constrained films , 1998 .

[64]  Richard D. James,et al.  Magnetic and magnetomechanical properties of Ni2MnGa , 1999 .

[65]  C. M. Wayman,et al.  Introduction to the crystallography of martensitic transformations , 1964 .

[66]  David Kinderlehrer,et al.  Theory of magnetostriction with application to Terfenol-D , 1994 .

[67]  C. Lexcellent,et al.  A general macroscopic description of the thermomechanical behavior of shape memory alloys , 1996 .

[68]  C. Palmstrøm,et al.  Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni2MnGa on (001) GaAs , 1999 .

[69]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[70]  C. M. Wayman,et al.  Crystallographic similarities in shape memory martensites , 1979 .

[71]  Shuichi Miyazaki,et al.  The shape memory mechanism associated with the martensitic transformation in TiNi alloys—I. Self-accommodation , 1989 .

[72]  L. Schetky Shape-memory alloys , 1979 .

[73]  K. Bhattacharya Self-accommodation in martensite , 1992 .

[74]  S. Kajiwara Experimental Aspects of the Crystallography of the Martensitic Transformation of BCC to 9 R Close-Packed Structure , 1976 .

[75]  G. Zanzotto,et al.  The Cauchy-Born hypothesis, nonlinear elasticity and mechanical twinning in crystals , 1996 .

[76]  S. Nenno,et al.  A phenomenological consideration on the thermoelastic martensite , 1975 .

[77]  T. Shield,et al.  Microstructure in the cubic to monoclinic transition in titanium–nickel shape memory alloys , 1999 .

[78]  V. V. Kokorin,et al.  Ferromagnetic shape memory in the NiMnGa system , 1999 .

[79]  Robert V. Kohn,et al.  Elastic Energy Minimization and the Recoverable Strains of Polycrystalline Shape‐Memory Materials , 1997 .

[80]  S. Kato,et al.  Configurations of martensite variants in Cu-Zn-Ga , 1976 .

[81]  T. Shield Orientation dependence of the pseudoelastic behavior of single crystals of CuAlNi in tension , 1995 .