Efficient Steffensen-type algorithms for solving nonlinear equations

We introduce a Steffensen-type method (STTM) for solving nonlinear equations in a Banach space setting. Then, we present a local convergence analysis for (STTM) using recurrence relations. Numerical examples validating our theoretical results are also provided in this study to show that (STTM) is faster than other methods [I.K. Argyros, J. Ezquerro, J.M. Gutiérrez, M. Hernández, and S. Hilout, On the semilocal convergence of efficient Chebyshev-Secant-type methods, J. Comput. Appl. Math. 235 (2011), pp. 3195–3206; J.A. Ezquerro and M.A. Hernández, An optimization of Chebyshev's method, J. Complexity 25 (2009), pp. 343–361] using similar convergence conditions.

[1]  Miguel Ángel Hernández,et al.  Solving a special case of conservative problems by Secant-like methods , 2005, Appl. Math. Comput..

[2]  tetsuro Yammoto,et al.  A convergence theorem for Newton-like methods in Banach spaces , 1987 .

[3]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[4]  Miodrag S. Petkovic,et al.  Derivative free two-point methods with and without memory for solving nonlinear equations , 2010, Appl. Math. Comput..

[5]  Miquel Grau-Sánchez,et al.  A variant of Cauchy's method with accelerated fifth-order convergence , 2004, Appl. Math. Lett..

[6]  Y. Cho,et al.  Numerical Methods for Equations and its Applications , 2012 .

[7]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[8]  Ioannis K. Argyros,et al.  Polynomial Operator Equations in Abstract Spaces and Applications , 1998 .

[9]  M. A. Wolfe Extended iterative methods for the solution of operator equations , 1978 .

[10]  ON SOME ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS , 1994 .

[11]  M. S. Petković,et al.  Construction of zero-finding methods by Weierstrass functions , 2007, Appl. Math. Comput..

[12]  Ioannis K. Argyros,et al.  On the weakening of the convergence of Newton's method using recurrent functions , 2009, J. Complex..

[13]  J. W. Schmidt,et al.  Untere Fehlerschranken für Regula-falsi-Verfahren , 1978 .

[14]  Pentti Laasonen,et al.  Ein überquadratisch konvergerter iterativer Algorithmus , 1969 .

[15]  Ioannis K. Argyros,et al.  Journal of Computational and Applied Mathematics on the Semilocal Convergence of Efficient Chebyshev–secant-type Methods , 2022 .

[16]  I. Argyros Convergence and Applications of Newton-type Iterations , 2008 .

[17]  Miguel Ángel Hernández,et al.  An optimization of Chebyshev's method , 2009, J. Complex..

[18]  J. Dennis Toward a Unified Convergence Theory for Newton-Like Methods , 1971 .

[19]  Ioannis K. Argyros,et al.  A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space , 2004 .

[20]  Ioannis K. Argyros,et al.  On the Newton-Kantorovich hypothesis for solving equations , 2004 .

[21]  M. J. Rubio,et al.  Secant-like methods for solving nonlinear integral equations of the Hammerstein type , 2000 .

[22]  Ioannis K. Argyros New sufficient convergence conditions for the secant method , 2005 .