Accelerated acoustic least-squares migration

[1]  Gerard T. Schuster,et al.  Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation , 2014 .

[2]  W. Symes,et al.  Flexibly preconditioned extended least-squares migration in shot-record domain , 2016 .

[3]  Aria Abubakar,et al.  Application of the nearly perfectly matched layer in acoustic wave modeling , 2007 .

[4]  William W. Symes,et al.  An approximate inverse to the extended Born modeling operator , 2014 .

[5]  Jack K. Cohen,et al.  An Inverse Method for Determining Small Variations in Propagation Speed , 1977 .

[6]  G. Chavent,et al.  An optimal true-amplitude least-squares prestack depth-migration operator , 1999 .

[7]  Laurent Hascoët,et al.  The Tapenade automatic differentiation tool: Principles, model, and specification , 2013, TOMS.

[8]  G. Schuster,et al.  Least-squares migration of incomplete reflection data , 1999 .

[9]  F. Kroode A wave-equation-based Kirchhoff operator , 2012 .

[10]  Andreas Griewank,et al.  Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation , 2000, TOMS.

[11]  Gerard T. Schuster,et al.  Plane-wave least-squares reverse-time migration , 2012 .

[12]  William W. Symes,et al.  Reverse time migration with optimal checkpointing , 2007 .

[13]  W. Symes,et al.  An alternative formula for approximate extended Born inversion , 2017 .

[14]  Gerard T. Schuster,et al.  Fast least-squares migration with a deblurring filter , 2009 .

[15]  Dong Sun,et al.  From modelling to inversion: designing a well‐adapted simulator , 2011 .

[16]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[17]  Lian Duan,et al.  Amplitude-preserving reverse time migration: From reflectivity to velocity and impedance inversion , 2014 .