Ultralow threshold electrically injected AlGaN nanowire ultraviolet lasers on Si

Ultraviolet (UV) lasers are of paramount importance for applications in water purification, diagnosis and bio-agent detection. Here we report that, with the use of dislocation-free AlGaN nanowires formed directly on Si substrate, electrically injected UV emission in the wavelength range from 319 nm to 335 nm can be readily achieved, which is the shortest wavelength range ever reported for electrically injected semiconductor lasers. In this work, catalyst-free AlGaN nanowire arrays are grown directly on Si substrate by radio frequency plasma-assisted molecular beam epitaxy (MBE). Our detailed calculation shows that such vertically aligned randomly distributed sub-wavelength scale nanowire array can sustain random lasing action. Various lasing peaks from 319 nm to 335 nm can be measured from such AlGaN nanowire samples under electrical injection. The threshold is measured to be in the range of tens of A/cm2 at cryogenic temperature, which is significantly smaller than the commonly reported GaN-based quantum well lasers. The measured linewidth is as narrow as 0.2 nm.

[1]  K. A. Bertnessa,et al.  Spontaneously grown GaN and AlGaN nanowires , 2006 .

[2]  Chris G. Van de Walle,et al.  Microscopic origins of surface states on nitride surfaces , 2007 .

[3]  Z. Mi,et al.  Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. , 2015, Nature nanotechnology.

[4]  M. Asif Khan,et al.  III–Nitride UV Devices , 2005 .

[5]  Yu Cao,et al.  Compositional modulation and optical emission in AlGaN epitaxial films , 2006 .

[6]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[7]  H. Renevier,et al.  Structural and optical properties of Alx Ga1–xN nanowires , 2013 .

[8]  Clement Yuen,et al.  Random laser action in ZnO nanorod arrays embedded in ZnO epilayers , 2004 .

[9]  Xiangyang Ma,et al.  Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si. , 2009, Optics express.

[10]  A. Davydov,et al.  GaN Nanowires Grown by Molecular Beam Epitaxy , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Hong Guo,et al.  Tuning the surface charge properties of epitaxial InN nanowires. , 2012, Nano letters.

[12]  Y. Taniyasu,et al.  An aluminium nitride light-emitting diode with a wavelength of 210 nanometres , 2006, Nature.

[13]  Jung Han,et al.  Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers , 2001 .

[14]  Michael Kneissl,et al.  Ultraviolet AlGaN multiple-quantum-well laser diodes , 2003 .

[15]  Chong-Xin Shan,et al.  Electrically pumped random lasers fabricated from ZnO nanowire arrays. , 2012, Nanoscale.

[16]  A. Genack,et al.  Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization. , 2005, Physical review letters.

[17]  A. A. Allerman,et al.  Growth and design of deep-UV (240–290 nm) light emitting diodes using AlGaN alloys , 2004 .

[18]  Hiroto Sekiguchi,et al.  Random laser action in GaN nanocolumns , 2010 .

[19]  Hirofumi Kan,et al.  A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode , 2008 .

[20]  Y. Liu,et al.  Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires , 2011 .

[21]  Hirofumi Kan,et al.  Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode , 2008 .

[22]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[23]  K. H. Chen,et al.  Catalytic growth and characterization of gallium nitride nanowires. , 2001, Journal of the American Chemical Society.

[24]  L. Chang,et al.  Neurotoxic effects of mercury--a review. , 1977, Environmental research.

[25]  Katsumi Kishino,et al.  Light localization characteristics in a random configuration of dielectric cylindrical columns , 2010 .

[26]  Kazuyoshi Iida,et al.  350.9 nm UV Laser Diode Grown on Low-Dislocation-Density AlGaN , 2004 .

[27]  L. Asryan,et al.  Theory of threshold characteristics of semiconductor quantum dot lasers , 2004 .

[28]  M. G. Kibria,et al.  p-Type InN nanowires. , 2013, Nano letters.

[29]  H. Kuo,et al.  Lasing at exciton transition in optically pumped gallium nitride nanopillars. , 2011, Optics express.

[30]  Z. Mi,et al.  Highly efficient, spectrally pure 340 nm ultraviolet emission from AlxGa1−xN nanowire based light emitting diodes , 2013, Nanotechnology.

[31]  Kai Cui,et al.  High efficiency ultraviolet emission from AlxGa1−xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy , 2012 .

[32]  A. A. Talin,et al.  GaN nanowire surface state observed using deep level optical spectroscopy , 2010 .

[33]  Shuji Nakamura,et al.  292 nm AlGaN Single-Quantum Well Light Emitting Diodes Grown on Transparent AlN Base , 2003 .

[34]  M. Stutzmann,et al.  Origin of energy dispersion in AlxGa1-xN/GaN nanowire quantum discs with low Al content , 2010 .

[35]  R. Street,et al.  Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition , 1996 .

[36]  Igor Levin,et al.  Catalyst-free growth of GaN nanowires , 2006 .

[37]  Takashi Mukai,et al.  365 nm Ultraviolet Laser Diodes Composed of Quaternary AlInGaN Alloy , 2003 .

[38]  Zetian Mi,et al.  Breaking the carrier injection bottleneck of phosphor-free nanowire white light-emitting diodes. , 2013, Nano letters.

[39]  H. Renevier,et al.  Growth, structural and optical properties of AlGaN nanowires in the whole composition range , 2013, Nanotechnology.

[40]  P. J. Dean,et al.  Absorption, Reflectance, and Luminescence of GaN Single Crystals , 1971 .

[41]  Hirofumi Kan,et al.  Entirely Crack-Free Ultraviolet GaN/AlGaN Laser Diodes Grown on 2-in. Sapphire Substrate , 2007 .

[42]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[43]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[44]  H. Yang,et al.  Ultraviolet random lasing action from highly disordered n-AlN/p-GaN heterojunction. , 2011, ACS applied materials & interfaces.

[45]  Z. Mi,et al.  On the Carrier Injection Efficiency and Thermal Property of InGaN/GaN Axial Nanowire Light Emitting Diodes , 2014, IEEE Journal of Quantum Electronics.

[46]  Michael Kneissl,et al.  Ultraviolet InAlGaN multiple‐quantum‐well laser diodes , 2003 .

[47]  Yunrong Wei,et al.  A compact efficient deep ultraviolet laser at 266 nm , 2013 .

[48]  V. Dierolf,et al.  Enhanced room-temperature luminescence efficiency through carrier localization in AlxGa1−xN alloys , 2005 .