A domain-theoretic approach to Brownian motion and general continuous stochastic processes

We introduce a domain-theoretic framework for continuous-time, continuous-state stochastic processes. The laws of stochastic processes are embedded into the space of maximal elements of the normalised probabilistic power domain on the space of continuous interval-valued functions endowed with the relative Scott topology. We use the resulting ω-continuous bounded complete dcpo to define partial stochastic processes and characterise their computability. For a given continuous stochastic process, we show how its domain-theoretic, i.e., finitary, approximations can be constructed, whose least upper bound is the law of the stochastic process. As a main result, we apply our methodology to Brownian motion. We construct a partial Wiener measure and show that the Wiener measure is computable within the domain-theoretic framework.

[1]  Mariko Yasugi,et al.  Computability of Probability Distributions and Distribution Functions , 2009, CCA.

[2]  W. Fouché The Descriptive Complexity of Brownian Motion , 2000 .

[3]  Abbas Edalat,et al.  A computable approach to measure and integration theory , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[4]  N. Kunitomo,et al.  Pricing Options With Curved Boundaries , 1992 .

[5]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[6]  Shoumei Li,et al.  Stochastic integral with respect to set-valued square integrable martingales , 2010 .

[7]  Willem L. Fouché,et al.  On the computability of a construction of Brownian motion† , 2013, Mathematical Structures in Computer Science.

[8]  Abbas Edalat,et al.  When Scott is weak on the top , 1997, Mathematical Structures in Computer Science.

[9]  Jimmie D. Lawson Domains, integration and 'positive analysis' , 2004, Math. Struct. Comput. Sci..

[10]  Abbas Edalat Domain theory in stochastic processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[11]  Abbas Edalat,et al.  Domains for Computation in Mathematics, Physics and Exact Real Arithmetic , 1997, Bulletin of Symbolic Logic.

[12]  Jimmie D. Lawson Computation on metric spaces via domain theory , 1998 .

[13]  Mathieu Hoyrup Calculabilité, aléatoire et théorie ergodique sur les espaces métriques , 2008 .

[14]  I. M. Koval'chik THE WIENER INTEGRAL , 1963 .

[15]  M. B. Pour-El,et al.  COMPUTABILITY AND NONCOMPUTABILITY IN CLASSICAL ANALYSIS , 1983 .

[16]  Yongcheng Wu,et al.  Computability of measurable sets via effective metrics , 2005, Math. Log. Q..

[17]  B. Simon Functional integration and quantum physics , 1979 .

[18]  C. Jones,et al.  A probabilistic powerdomain of evaluations , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[19]  Abbas Edalat A computable approach to measure and integration theory , 2009, Inf. Comput..

[20]  Abbas Edalat A differential operator and weak topology for Lipschitz maps , 2010 .

[21]  Jimmie D. Lawson,et al.  Spaces of maximal points , 1997, Mathematical Structures in Computer Science.

[22]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[23]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[24]  Anja Walter,et al.  Introduction To Stochastic Calculus With Applications , 2016 .

[25]  Willem L. Fouché,et al.  Arithmetical representations of Brownian motion I , 2000, Journal of Symbolic Logic.

[26]  Klaus Weihrauch,et al.  Computability on the probability measures on the Borel sets of the unit interval , 1997, CCA.

[27]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[28]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[29]  Klaus Keimel,et al.  The way-below relation of function spaces over semantic domains , 1998 .

[30]  Yongcheng Wu,et al.  Computability of measurable sets via effective topologies , 2006, Arch. Math. Log..

[31]  Abbas Edalat,et al.  An Extension Result for Continuous Valuations , 2000, COMPROX.

[32]  D. Freedman Brownian motion and diffusion , 1971 .

[33]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[34]  Interval-valued Stochastic Processes and Stochastic Integrals , 2007, Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).

[35]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[36]  Viggo Stoltenberg-hansen,et al.  In: Handbook of Logic in Computer Science , 1995 .

[37]  Alexandre J. Chorin,et al.  Accurate Evaluation of Wiener Integrals , 1973 .

[38]  J. Howroyd A Domain-Theoretic Approach to Integration in Hausdorff Spaces , 2000 .

[39]  Abbas Edalat,et al.  Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..

[40]  Abbas Edalat,et al.  Domain theory and integration , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.