Flexible Bodies in Multibody Systems

The motion of flexible bodies in multibody systems can be represented in many applications as a superposition of a large reference motion and small deformations, which allows linearisation in the deformation variables. The linearisation procedure requires a careful analysis of geometric stiffening. The consideration of the effect is discussed for general flexible structures here including theoretical background, computer implementation and demonstration of the necessity of its consideration in specific examples.

[1]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[2]  Wolfgang Rulka,et al.  SIMPACK — A Computer Program for Simulation of Large-motion Multibody Systems , 1990 .

[3]  Ted Belytschko,et al.  Advances in computational mechanics , 1992 .

[4]  Oskar Wallrapp,et al.  Standard Input Data of Flexible Members in Multibody Systems , 1993 .

[5]  Alex Eichberger,et al.  Transputer-Based Multibody System Dynamic Simulation, Part I: The Residual Algorithm—A Modified Inverse Dynamic Formulation∗ , 1994 .

[6]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[7]  R. Schwertassek,et al.  Floating Frame of Reference Formulation and Definition of the Nodal Coordinates. , 1996 .

[8]  I. Szábo,et al.  Geschichte der mechanischen Prinzipien , 1977 .

[9]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems , 1994 .

[10]  Dewey H. Hodges,et al.  Nonlinear equations for dynamics of pretwisted beams undergoing small strains and large rotations , 1985 .

[11]  Christian Wilhelm Braune,et al.  Über den Schwerpunkt des menschlichen Körpers : mit Rücksicht auf die Ausrüstung des deutschen Infanteristen , 1889 .

[12]  J. C. Simo,et al.  On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part II , 1986 .

[13]  R. E. Roberson,et al.  Computer-oriented dynamic modeling of spacecraft - Historical evolution of Eulerian multibody formalisms since 1750 , 1977 .

[14]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[15]  D. Sachau,et al.  Space flight dynamic simulations using finite element analysis results in multibody system codes , 1994 .

[16]  J. Wittenburg,et al.  Dynamics of systems of rigid bodies , 1977 .

[17]  Lothar Gaul,et al.  Active damping of space structures by contact pressure control in joints , 1997 .

[18]  Ronald L. Huston,et al.  Dynamics of Multibody Systems , 1988 .

[19]  R. Schwertassek,et al.  The benefits of parallel multibody simulation , 1994 .

[20]  T. R. Kane,et al.  Dynamics of a cantilever beam attached to a moving base , 1987 .

[21]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[22]  David A. Peters,et al.  On the nonlinear deformation geometry of Euler-Bernoulli beams. [rotary wings] , 1980 .

[23]  Hans Przibram Theoretische Grundlage für eine Mechanik der lebenden Körper , 1907 .

[24]  E. J. Haug,et al.  Computer aided kinematics and dynamics of mechanical systems. Vol. 1: basic methods , 1989 .

[25]  Ahmed A. Shabana,et al.  Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .

[26]  W. Rulka,et al.  Aspects of Efficient and Reliable Multibody System Simulation , 1990 .

[27]  Robert M. Glorioso,et al.  Engineering Cybernetics , 1975 .

[28]  M. Otter,et al.  An Object-Oriented Data Model for Multibody Systems , 1993 .

[29]  Fischer. Otto,et al.  Kinematik organischer Gelenke , 1907, Nature.

[30]  W. Kortüm,et al.  Analysis and Design of Flexible and Controlled Multibody Systems with SIMPACK. , 1995 .

[31]  P. Likins Robert E. Roberson: A Personal Tribute , 1989 .

[32]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[33]  Karl Wolf,et al.  Vorlesungen über technische Mechanik , 1923 .

[34]  Robert E. Roberson,et al.  A Perspective on Computer-Oriented Mutlibody Dynamical Formalisms and their Implementations , 1986 .

[35]  John C. Houbolt,et al.  Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted nonuniform rotor blades , 1957 .

[36]  Martin Botz,et al.  Zur Dynamik von Mehrkörpersystemen mit elastischen Balken , 1992 .

[37]  O. Wallrapp,et al.  Simulation flexibler Mehrkörpersysteme bei Verwendung von FEM-Daten-Interface zwischen Ansys und Mehrkörperprogrammen , 1991 .

[38]  W. Rulka,et al.  SIMPACK An Analysis and Design Tool for Mechanical Systems , 1993 .

[39]  A. Shabana Finite Element Incremental Approach and Exact Rigid Body Inertia , 1995 .

[40]  Gekoppelte Biegeschwingungen von Laufschaufeln im Fliehkraftfeld , 1970 .

[41]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .

[42]  Roderic C. Deyo,et al.  Real-Time Integration Methods for Mechanical System Simulation , 1991 .

[43]  Oskar Wallrapp,et al.  Standardization of flexible body modeling in multibody system codes , 1994 .