On -invariant subvarieties of semiabelian varieties and the Manin-Mumford conjecture

Let A be a semiabelian variety over an algebraically closed field of arbitrary characteristic, endowed with a finite morphism ψ : A → A. In this paper we give an essentially complete classification of all ψ-invariant subvarieties of A. For example, under some mild assumptions on (A,ψ) we prove that every ψinvariant subvariety is a finite union of translates of semiabelian subvarieties. This result is then used to prove the Manin-Mumford conjecture in arbitrary characteristic and in full generality. Previously, it had been known only for the group of torsion points of order prime to the characteristic of K. The proofs involve only algebraic geometry, though scheme theory and some arithmetic arguments cannot be avoided.

[1]  Shou-wu Zhang Equidistribution of small points on abelian varieties , 1998 .

[2]  A. Grothendieck,et al.  Revêtements étales et groupe fondamental, (SGA1) : séminaire de géométrie algébrique, du Bois Marie, 1960-61 , 2003 .

[3]  A. Grothendieck,et al.  Schémas en groupes : séminaire de géométrie algébrique [1963] , 1963 .

[4]  S. Lang,et al.  Algebraic Groups Over Finite Fields , 1956 .

[5]  Y. Manin,et al.  THE THEORY OF COMMUTATIVE FORMAL GROUPS OVER FIELDS OF FINITE CHARACTERISTIC , 2005 .

[6]  Fedor Bogomolov Sur l'algebricite des representations l-adiques , 1980 .

[7]  E. Bouscaren Théorie des modèles et conjecture de Manin-Mumford , 2000 .

[8]  J. Fontaine Groupes p-divisibles sur les corps locaux , 1977 .

[9]  A. Grothendieck,et al.  Schémas en groupes : séminaire de géométrie algébrique du Bois Marie, 1962/64, SGA 3 , 1970 .

[10]  Ehud Hrushovski,et al.  The Manin-Mumford conjecture and the model theory of difference fields , 2001, Ann. Pure Appl. Log..

[11]  Positivite et discretion des points algebriques des courbes , 1996, alg-geom/9606017.

[12]  D. Abramovich Subvarieties Of Semiabelian Varieties , 1994 .

[13]  R. Pink,et al.  On Hrushovski's Proof of the Manin-Mumford Conjecture , 2002, math/0212408.

[14]  Ehud Hrushovski,et al.  The Mordell-Lang conjecture for function fields , 1996 .

[15]  M. Raynaud Sous-variétés d’une variété abélienne et points de torsion , 1983 .

[16]  A. Weil,et al.  Variétés abéliennes et courbes algébriques , 1948 .

[17]  M. Raynaud Courbes sur une variété abélienne et points de torsion , 1983 .

[18]  A. Grothendieck Revetements etales et groupe fondamental , 1971 .

[19]  A. Grothendieck Seminaire de geometrie algebrique 1960-61 , 1961 .