Numerical Solution of the Born-Green Equation for the Pair Potential

To derive the pair potential from observed structural data the Born-Green equation has been numerically solved by a linearized simultaneous equation method without any initial function. Liquid Cs has a long-range oscillatory potential, whereas liquid Ar has a Lennard-Jones type potential. Problems such as truncating the infinite integral at a finite upper value in computing the pair potential have been discussed by means of numerical analysis. Zur zahlenmasigen Berechnung des Paarpotentials aus gemessenen strukturellen Daten wird die Born-Greensche Gleichung unter Verwendung einer linearisierten algebraischen Gleichung ohne Anfangswertfunktion gelost. Flussiges Cs hat ein oszillierendes Potential groser Reichweite, flussiges Ar dagegen ein Potential vom Lennard-Jones-Typ. Das Problem, das der unendliche Integrationsbereich bei der Berechnung des Paarpotentials bei einem bestimmten oberen Wert abgeschnitten werden mus, wird mit Hilfe numerischer Analyse eingehend diskutiert.

[1]  Y. Waseda,et al.  Atomic Distribution and Magnetic Moment in Liquid Iron by Neutron Diffraction , 1970 .

[2]  P. C. Gehlen,et al.  BORN-GREEN PAIR POTENTIALS FOR LIQUID LEAD. , 1969 .

[3]  W. H. Young,et al.  Interionic potentials in monovalent metals , 1968 .

[4]  C. J. Pings,et al.  Structure of Liquids. III. An X‐Ray Diffraction Study of Fluid Argon , 1967 .

[5]  P. A. Egelstaff,et al.  The structure factor for liquid metals at low angles , 1966 .

[6]  A. Rahman,et al.  Effects of a Long-Range Oscillatory Potential on the Radial Distribution Function and the Constant of Self-Diffusion in Liquid Na , 1966 .

[7]  B. N. Brockhouse,et al.  Pseudopotentials in the theory of metals , 1966 .

[8]  N. H. March,et al.  Ion-ion oscillatory potentials in liquid metals , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  N. H. March,et al.  Long-range oscillatory interaction between ions in liquid metals , 1963 .

[10]  K. Furukawa THE RADIAL DISTRIBUTION CURVES OF LIQUIDS BY DIFFRACTION METHODS , 1962 .

[11]  N. S. Gingrich,et al.  Structure of Alkali Metals in the Liquid State , 1961 .

[12]  E R Dobbs,et al.  Theory and properties of solid argon , 1957 .

[13]  Max Born,et al.  A general kinetic theory of liquids I. The molecular distribution functions , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  George Rutledge,et al.  A Reliable Method of Obtaining the Derivative Function from Smoothed Data of Observation , 1932 .