Classes of filters in generalizations of commutative fuzzy structures

Bounded commutative residuated lattice ordered monoids (R -monoids) are a common generalization of BL-algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative R monoids.

[1]  K. Swamy,et al.  Dually Residuated Lattice Ordered Semigroups, II , 1965 .

[2]  C. Tsinakis,et al.  A Survey of Residuated Lattices , 2002 .

[3]  Wieslaw A. Dudek,et al.  Filter theory of BL algebras , 2007, Soft Comput..

[4]  Petr Hájek,et al.  Basic fuzzy logic and BL-algebras II , 1998, Soft Comput..

[5]  Jiří Rachůnek,et al.  Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures , 2006 .

[6]  K. L. N. Swamy Dually Residuated Lattice Ordered Semigroups, III , 1966 .

[7]  Jiří Rachůnek A duality between algebras of basic logic and bounded representable $DRl$-monoids , 2001 .

[8]  H. Priestley,et al.  Distributive Lattices , 2004 .

[9]  K. Swamy,et al.  Dually residuated lattice ordered semigroups , 1965 .

[10]  Petr Hájek,et al.  Basic fuzzy logic and BL-algebras , 1998, Soft Comput..

[11]  Jiří Rachůnek,et al.  Local bounded commutative residuated ℓ-monoids , 2007 .

[12]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[13]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[14]  Afrodita Iorgulescu,et al.  Classes of Pseudo-BCK algebras -Part I , 2006, J. Multiple Valued Log. Soft Comput..

[15]  Esfandiar Eslami,et al.  Some types of filters in BL algebras , 2006, Soft Comput..

[16]  Jiří Rachůnek,et al.  MV-algebras are categorically equivalent to a class of $\mathcal {DR}l_{1(i)}$-semigroups , 1998 .

[17]  Anatolij Dvurecenskij,et al.  Probabilistic averaging in bounded commutative residuated l-monoids , 2006, Discret. Math..

[18]  Jiří Rachůnek,et al.  Negation in bounded commutative DRℓ-monoids , 2006 .

[19]  Esko Turunen,et al.  Boolean deductive systems of BL-algebras , 2001, Arch. Math. Log..

[20]  Afrodita Iorgulescu On BCK Algebras - Part III: Classes of Examples of Proper MVAlgebras, BLAlgebras and Divisible Bounded Residuated Lattices, with or without Condition (WNM) , 2010, J. Multiple Valued Log. Soft Comput..