Fully probabilistic knowledge expression and incorporation
暂无分享,去创建一个
Tatiana V. Guy | Miroslav Kárný | Petr Nedoma | Fabrizio Ruggeri | Antonella Bodini | Jan Kracík | A. Bodini | F. Ruggeri | M. Kárný | P. Nedoma | J. Kracík
[1] M. Kárný. Adaptive Systems: Local Approximators? , 1998 .
[2] Miroslav Kárný. Parametrization of multi-output autoregressive-regressive models for self-tuning control , 1992, Kybernetika.
[3] Tatiana V. Guy,et al. How to exploit external model of data for parameter estimation? , 2006 .
[4] Petr Nedoma,et al. Quantification of prior information revised , 2001 .
[5] M. Birattari,et al. Lazy learning for local modelling and control design , 1999 .
[6] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[7] Ferenc Szeifert,et al. Incorporating prior knowledge in fuzzy model identification , 2000, Int. J. Syst. Sci..
[8] J. F. C. Kingman,et al. Information and Exponential Families in Statistical Theory , 1980 .
[9] John Ladbrook,et al. Using a simulation model for knowledge elicitation and knowledge management , 2004, Simul. Model. Pract. Theory.
[10] Tatiana V. Guy,et al. Fully probabilistic control design , 2006, Syst. Control. Lett..
[11] E. Mosca. Optimal, Predictive and Adaptive Control , 1994 .
[12] David Ríos Insua,et al. Robust Bayesian analysis , 2000 .
[13] G. Bierman. Factorization methods for discrete sequential estimation , 1977 .
[14] V. G. D. Fonseca,et al. Distortion in statistical inference: the distinction between data contamination and model deviation , 2006 .
[15] Miroslav Kárný,et al. Optimized bayesian dynamic advising : theory and algorithms , 2006 .
[16] David Clarke. Pretuning and adaptation of PI controllers , 2003 .
[17] A. O'Hagan,et al. Statistical Methods for Eliciting Probability Distributions , 2005 .
[18] Alessandra Guglielmi,et al. Methods for global prior robustness under generalized moment conditions , 2000 .
[19] Kotagiri Ramamohanarao,et al. DeEPs: A New Instance-Based Lazy Discovery and Classification System , 2004, Machine Learning.
[20] O. Barndorff-Nielsen. Information and Exponential Families in Statistical Theory , 1980 .
[21] Bradley P. Carlin,et al. BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..
[22] Robert L. Kosut,et al. Iterative Adaptive Control: Windsurfing with Confidence , 2001 .
[23] Ivan Nagy,et al. When has estimation reached a steady state? The Bayesian sequential test , 2005 .
[24] Miroslav Kárný,et al. Merging of data knowledge in bayesian estimation , 2005, ICINCO.
[25] Rodney W. Johnson,et al. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.
[26] João M. Lemos,et al. Survey of industrial optimized adaptive control , 2012 .
[27] Huaiyu Zhu. On Information and Sufficiency , 1997 .
[28] D. Kerridge. Inaccuracy and Inference , 1961 .
[29] Kweku-Muata Osei-Bryson,et al. Supporting knowledge elicitation and consensus building for dempster‐shafer decision models , 2003, Int. J. Intell. Syst..
[30] J. Bernardo. Expected Information as Expected Utility , 1979 .
[31] Petr Nedoma,et al. Prior information in structure estimation , 2003 .
[32] Václav Peterka,et al. Bayesian system identification , 1979, Autom..
[33] Orhan Arikan,et al. Maximum likelihood estimation of Gaussian mixture models using stochastic search , 2012, Pattern Recognit..
[34] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[35] Karl Johan Åström,et al. Relay Feedback Auto-tuning of Process Controllers – A Tutorial Review , 2002 .
[36] Miroslav Kárný. Quantification of prior knowledge about global characteristics of linear normal model , 1984, Kybernetika.