An Adaptive Stochastic Galerkin Tensor Train Discretization for Randomly Perturbed Domains
暂无分享,去创建一个
[1] Claude Jeffrey Gittelson,et al. Adaptive stochastic Galerkin FEM , 2014 .
[2] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[3] Hermann G. Matthies,et al. Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format , 2015, SIAM/ASA J. Uncertain. Quantification.
[4] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[5] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[6] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[7] Helmut Harbrecht,et al. Efficient approximation of random fields for numerical applications , 2015, Numer. Linear Algebra Appl..
[8] Daniel M. Tartakovsky,et al. Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..
[9] Lars Grasedyck,et al. Variants of Alternating Least Squares Tensor Completion in the Tensor Train Format , 2015, SIAM J. Sci. Comput..
[10] R. G. Cooke. Functional Analysis and Semi-Groups , 1949, Nature.
[11] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[12] Fabio Nobile,et al. Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations , 2013, Comput. Math. Appl..
[13] Reinhold Schneider,et al. Adaptive stochastic Galerkin FEM with hierarchical tensor representations , 2015, Numerische Mathematik.
[14] Michael Peters,et al. Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion , 2018, SIAM/ASA J. Uncertain. Quantification.
[15] Claude Jeffrey Gittelson,et al. A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes , 2013 .
[16] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[17] H. Harbrecht,et al. On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .
[18] Reinhold Schneider,et al. Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations , 2018, Numerische Mathematik.
[19] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[20] Boris N. Khoromskij,et al. Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..
[21] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .
[22] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[23] Reinhold Schneider,et al. Non-intrusive Tensor Reconstruction for High-Dimensional Random PDEs , 2019, Comput. Methods Appl. Math..
[24] Helmut Harbrecht,et al. Novel results for the anisotropic sparse grid quadrature , 2015, J. Complex..
[25] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[26] Robert Scheichl,et al. A Hybrid Alternating Least Squares-TT-Cross Algorithm for Parametric PDEs , 2017, SIAM/ASA J. Uncertain. Quantification.
[27] Helmut Harbrecht,et al. Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.
[28] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..