An Adaptive Stochastic Galerkin Tensor Train Discretization for Randomly Perturbed Domains

A linear PDE problem for randomly perturbed domains is considered in an adaptive Galerkin framework. The perturbation of the domain's boundary is described by a vector valued random field depending on a countable number of random variables in an affine way. The corresponding Karhunen-Lo\`eve expansion is approximated by the pivoted Cholesky decomposition based on a prescribed covariance function. The examined high-dimensional Galerkin system follows from the domain mapping approach, transferring the randomness from the domain to the diffusion coefficient and the forcing. In order to make this computationally feasible, the representation makes use of the modern tensor train format for the implicit compression of the problem. Moreover, an a posteriori error estimator is presented, which allows for the problem-dependent iterative refinement of all discretization parameters and the assessment of the achieved error reduction. The proposed approach is demonstrated in numerical benchmark problems.

[1]  Claude Jeffrey Gittelson,et al.  Adaptive stochastic Galerkin FEM , 2014 .

[2]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[3]  Hermann G. Matthies,et al.  Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format , 2015, SIAM/ASA J. Uncertain. Quantification.

[4]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[5]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[6]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[7]  Helmut Harbrecht,et al.  Efficient approximation of random fields for numerical applications , 2015, Numer. Linear Algebra Appl..

[8]  Daniel M. Tartakovsky,et al.  Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..

[9]  Lars Grasedyck,et al.  Variants of Alternating Least Squares Tensor Completion in the Tensor Train Format , 2015, SIAM J. Sci. Comput..

[10]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[11]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[12]  Fabio Nobile,et al.  Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations , 2013, Comput. Math. Appl..

[13]  Reinhold Schneider,et al.  Adaptive stochastic Galerkin FEM with hierarchical tensor representations , 2015, Numerische Mathematik.

[14]  Michael Peters,et al.  Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion , 2018, SIAM/ASA J. Uncertain. Quantification.

[15]  Claude Jeffrey Gittelson,et al.  A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes , 2013 .

[16]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[17]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[18]  Reinhold Schneider,et al.  Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations , 2018, Numerische Mathematik.

[19]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[20]  Boris N. Khoromskij,et al.  Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..

[21]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[22]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[23]  Reinhold Schneider,et al.  Non-intrusive Tensor Reconstruction for High-Dimensional Random PDEs , 2019, Comput. Methods Appl. Math..

[24]  Helmut Harbrecht,et al.  Novel results for the anisotropic sparse grid quadrature , 2015, J. Complex..

[25]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[26]  Robert Scheichl,et al.  A Hybrid Alternating Least Squares-TT-Cross Algorithm for Parametric PDEs , 2017, SIAM/ASA J. Uncertain. Quantification.

[27]  Helmut Harbrecht,et al.  Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.

[28]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..