Remote estimation of chlorophyll-a concentration in turbid water using a spectral index: a case study in Taihu Lake, China

Abstract Chlorophyll-a concentration (Chla) is a key indicator of water quality, and accurate estimates of Chla using remote sensing data remain challenging in turbid waters. Previous research has demonstrated the feasibility of retrieving Chla in vegetation using spectral index, which may be the potential reference for Chla inversion in turbid waters. In this study, 106 hyperspectral indices, including vegetation, fluorescence, and trilateral indices, as well as combinations thereof, are calculated based on the in situ spectra data of 2004 to 2011 in Taihu Lake, China, to explore their potential use in turbid waters. The results show that the normal chlorophyll index (NCI) ( R 690 / R 550 − R 675 / R 700 ) / ( R 690 / R 550 + R 675 / R 700 ) is optimal for Chla estimation, with a determination coefficient ( R 2 ) of 0.92 and a root mean square error (RMSE) of 14.36     mg / m 3 for the data from July to August 2004, when Chla ranged from 7 to 192     mg / m 3 . Validation using the datasets of 2005, 2010, and 2011 shows that after reparameterization, the NCI model yields low RMSEs and is more robust than the three- and four-band algorithms. The results indicate that the NCI model can satisfactorily estimate Chla in multiple datasets without the need of additional band tuning.

[1]  Mark R. Miller,et al.  Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols , 2003 .

[2]  H. Kaufmann,et al.  Feasibility study for lake water quality assessment using MIDORI AVNIR data , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[3]  Huang Changchun Retrieval of Chlorophyll-a Concentration in the Turbid and Eutrophic Taihu Lake , 2009 .

[4]  R. H. Myers Classical and modern regression with applications , 1986 .

[5]  C. François,et al.  Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements , 2004 .

[6]  J. Peñuelas,et al.  The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. , 1994 .

[7]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[8]  I. Filella,et al.  Reflectance assessment of mite effects on apple trees , 1995 .

[9]  D. M. Moss,et al.  Red edge spectral measurements from sugar maple leaves , 1993 .

[10]  Stefan G. H. Simis,et al.  Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water , 2005 .

[11]  G. A. Blackburn,et al.  Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches , 1998 .

[12]  A. Gitelson,et al.  A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation , 2008 .

[13]  J. Schalles Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentrations in coastal waters with varying suspended matter and cdom concentrations , 2006 .

[14]  J. Roujean,et al.  Estimating PAR absorbed by vegetation from bidirectional reflectance measurements , 1995 .

[15]  R. Person Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, Colorado , 1972 .

[16]  J. Chen Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications , 1996 .

[17]  A. Gitelson Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. , 2004, Journal of plant physiology.

[18]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[19]  Y. Zha,et al.  A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China , 2009 .

[20]  Shu Xiao,et al.  Relationship between Algal Chlorophyll Concentration and Spectral Reflectance of Inland Water , 2000 .

[21]  D. Mishra,et al.  Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters , 2012 .

[22]  H. Gausman,et al.  Leaf Reflectance vs. Leaf Chlorophyll and Carotenoid Concentrations for Eight Crops1 , 1977 .

[23]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[24]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[25]  C. Elvidge Visible and near infrared reflectance characteristics of dry plant materials , 1990 .

[26]  K. Voss,et al.  Spectral optimization for constituent retrieval in Case 2 waters II: Validation study in the Chesapeake Bay , 2009 .

[27]  Moon S. Kim,et al.  The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par) , 1994 .

[28]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[29]  John R. Miller,et al.  Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy , 2005 .

[30]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[31]  John R. Miller,et al.  Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model , 1990 .

[32]  A. Viña,et al.  Comparison of different vegetation indices for the remote assessment of green leaf area index of crops , 2011 .

[33]  Jason A. Cole,et al.  Hyperspectral Remote Sensing and Its Applications , 2005 .

[34]  G. Agati,et al.  New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. , 2001, Journal of photochemistry and photobiology. B, Biology.

[35]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[36]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[37]  Edward J. Milton,et al.  Estimating the spectral response function of the CASI-2 , 2004 .

[38]  J. Adolf,et al.  Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight , 2004 .

[39]  S. Elvira,et al.  A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants , 1992 .

[40]  Hartmut K. Lichtenthaler,et al.  The Chlorophyll Fluorescence Ratio F735/F700 as an Accurate Measure of the Chlorophyll Content in Plants , 1999 .

[41]  Pablo J. Zarco-Tejada,et al.  Chlorophyll Fluorescence Effects on Vegetation Apparent Reflectance: I. Leaf-Level Measurements and Model Simulation , 2000 .

[42]  M. Schaepman,et al.  Review of constituent retrieval in optically deep and complex waters from satellite imagery , 2012 .

[43]  C. Elvidge,et al.  Comparison of broad-band and narrow-band red and near-infrared vegetation indices , 1995 .

[44]  Guang Jie The Hyperspectral Data Monitoring Model of Chlorophyll-a of Summer in Taihu Lake,China , 2007 .

[45]  G. Carter,et al.  Spectral reflectance characteristics and digital imagery of a pine needle blight in the southeastern United States , 1996 .

[46]  A. Gitelson,et al.  Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy¶ , 2002, Photochemistry and photobiology.

[47]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[48]  N. H. Brogea,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2022 .

[49]  Timothy J. Malthus,et al.  Quantitative modeling of inland water quality for high-resolution MSS systems , 1991, IEEE Trans. Geosci. Remote. Sens..

[50]  B. Datt Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total Carotenoid Content in Eucalyptus Leaves , 1998 .

[51]  Sun Hua-yun A Logical Problem in the Building Linear Regression Model on Estimating Chlorophyll-a Concentration in Lake Based on the Measured Spectrum Data , 2010 .

[52]  J. Gower,et al.  Interpretation of the 685nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS , 1999 .

[53]  Donald C. Rundquist,et al.  Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir , 1997 .

[54]  Anatoly A. Gitelson,et al.  Remote chlorophyll-a retrieval in turbid, productive estuaries : Chesapeake Bay case study , 2007 .

[55]  P. Gong,et al.  Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia , 2002 .

[56]  L. Prieur,et al.  Analysis of variations in ocean color1 , 1977 .

[57]  Anatoly A. Gitelson,et al.  Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—successes and challenges , 2009 .

[58]  R. Merton,et al.  MONITORING COMMUNITY HYSTERESIS USING SPECTRAL SHIFT ANALYSIS AND THE RED-EDGE VEGETATION STRESS INDEX , 1998 .

[59]  Christopher B. Field,et al.  Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves☆ , 1994 .

[60]  D. Rundquist,et al.  The spectral responses of algal chlorophyll in water with varying levels of suspended sediment , 1994 .

[61]  D. G. George The airborne remote sensing of phytoplankton chlorophyll in the lakes and tarns of the English Lake District , 1997 .

[62]  A. Gitelson,et al.  Reflectance in the red and near infra-red ranges of the spectrum as tool for remote chlorophyll estimation in inland waters-Lake Kinneret case study , 1995, Eighteenth Convention of Electrical and Electronics Engineers in Israel.

[63]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[64]  A. Gitelson,et al.  Determination of chlorophyll a of inland waters on the basis of spectral reflectance , 1992 .

[65]  Moon S. Kim,et al.  Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements , 1994 .

[66]  V. K. Dadhwal,et al.  Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery , 2007, The Journal of Agricultural Science.

[67]  Arnold G. Dekker,et al.  Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data , 2002 .

[68]  John R. Miller,et al.  Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[69]  Anatoly A. Gitelson,et al.  Towards a unified approach for remote estimation of chlorophyll‐a in both terrestrial vegetation and turbid productive waters , 2003 .

[70]  Yuri A. Gritz,et al.  Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.

[71]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[72]  Anatoly A. Gitelson,et al.  The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration , 1992 .

[73]  A. Gitelson,et al.  Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .

[74]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[75]  Luis Guanter,et al.  Atmospheric correction of ENVISAT/MERIS data over inland waters: Validation for European lakes , 2010 .

[76]  Prieur,et al.  Analysis of variations in ocean color’ , 2000 .

[77]  Anatoly A. Gitelson,et al.  Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: Model tuning and accuracy optimization , 2006 .

[78]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[79]  G. Carter Ratios of leaf reflectances in narrow wavebands as indicators of plant stress , 1994 .

[80]  B. Yoder,et al.  Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales , 1995 .

[81]  A. Gitelson,et al.  Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves , 2006 .

[82]  Guoxiang Wang,et al.  Validation of the three-band chlorophyll-a inversion model in turbid water: the case of Taihu Lake, China , 2010, Defense + Commercial Sensing.

[83]  Francine Heisel,et al.  Detection of vegetation stress via a new high resolution fluorescence imaging system , 1996 .

[84]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[85]  Claus Buschmann,et al.  In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation , 1993 .

[86]  Bisun Datt,et al.  A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves , 1999 .

[87]  Moon S. Kim,et al.  Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves , 1992 .

[88]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[89]  Zhao Dong-zhi The optimized spectral bands ratio for the relation of sun-induced chlorophyll fluorescence height with high chlorophyll a concentration of algal bloom waters , 2005 .

[90]  Giorgio Dall'Olmo,et al.  Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results. , 2006, Applied optics.