Discrete active models and applications

Abstract Optimization processes based on “active models” play central roles in many areas of computational vision as well as computational geometry. Unfortunately, current models usually require highly complex and sophisticated mathematical machinery and at the same time they suffer from a number of limitations which impose restrictions on their applicability. In this paper a simple class of discrete active models, called migration processes (MPs), is presented. The processes are based on iterated averaging over neighborhoods defined by constant geodesic distance. It is demonstrated that the MP model-a system of self-organizing active particles—has a number of advantages over previous models, both parametric active models (“snakes”) and implicit (contour evolution) models. Due to the generality of the MP model, the process can be applied to derive natural solutions to a variety of optimization problems,including defining (minimal) surface patches given their boundary curves; finding shortest paths joining sets of points; and decomposing objects into “primitive” parts.

[1]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[2]  Benjamin B. Kimia,et al.  Three-dimensional shape representation from curvature dependent surface evolution , 1994, Proceedings of 1st International Conference on Image Processing.

[3]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  J J Koenderink,et al.  What Does the Occluding Contour Tell Us about Solid Shape? , 1984, Perception.

[5]  Berthold K. P. Horn The Curve of Least Energy , 1983, TOMS.

[6]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[7]  A. Pentland Recognition by Parts , 1987 .

[8]  Ioannis Pitas,et al.  Morphological Shape Decomposition , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Benjamin B. Kimia,et al.  On the evolution of curves via a function of curvature , 1992 .

[10]  Donald D. Hoffman,et al.  Codon constraints on closed 2D shapes , 1985, Comput. Vis. Graph. Image Process..

[11]  Kaleem Siddiqi,et al.  Parts of visual form: computational aspects , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[12]  M. Grayson Shortening embedded curves , 1989 .

[13]  J. Koenderink,et al.  The Shape of Smooth Objects and the Way Contours End , 1982, Perception.

[14]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[15]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[16]  Gábor Székely,et al.  Deformable Velcro surfaces , 1995, Proceedings of IEEE International Conference on Computer Vision.

[17]  Ramakant Nevatia,et al.  Recognizing 3-D Objects Using Surface Descriptions , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  J. Koenderink,et al.  Photometric Invariants Related to Solid Shape , 1980 .

[19]  G. Huisken Flow by mean curvature of convex surfaces into spheres , 1984 .

[20]  Michael Leyton,et al.  Symmetry-curvature duality , 1987, Comput. Vis. Graph. Image Process..

[21]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[22]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[23]  Jan J. Koenderink,et al.  Inferring three-dimensional shapes from two-dimensional silhouettes , 1987 .

[24]  Ruzena Bajcsy,et al.  Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Michael Leyton,et al.  A Process-Grammar for Shape , 1988, Artif. Intell..

[26]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[27]  Bruce M. Bennett,et al.  Description of solid shape and its inference from occluding contours , 1987 .

[28]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[29]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[30]  Gábor Székely,et al.  Estimating shortest paths and minimal distances on digitized three-dimensional surfaces , 1993, Pattern Recognit..

[31]  Richard Szeliski,et al.  Modeling surfaces of arbitrary topology with dynamic particles , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Ramakant Nevatia,et al.  Shape from Contour: Straight Homogeneous Generalized Cylinders and Constant Cross Section Generalized Cylinders , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  D. Jacobs Grouping for Recognition , 1989 .

[34]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[35]  S. Zucker,et al.  Toward a computational theory of shape: an overview , 1990, eccv 1990.

[36]  Dimitris N. Metaxas,et al.  Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Gérard G. Medioni,et al.  Part decomposition and description of 3D shapes , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[38]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[39]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[40]  Guillermo Sapiro,et al.  Area and Length Preserving Geometric Invariant Scale-Spaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  A. Chorin Flame advection and propagation algorithms , 1980 .

[42]  S. Angenent Parabolic equations for curves on surfaces Part II. Intersections, blow-up and generalized solutions , 1991 .

[43]  Gábor Székely,et al.  Making snakes converge from minimal initialization , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[44]  C. B. Wilson,et al.  The mathematical description of shape and form , 1984 .

[45]  A. Gray Modern Differential Geometry of Curves and Surfaces , 1993 .

[46]  Lee R. Nackman,et al.  Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Peter Chambers,et al.  Visualization of solid reaction-diffusion systems , 1995, IEEE Computer Graphics and Applications.

[49]  Tommaso Toffoli,et al.  Cellular Automata Machines , 1987, Complex Syst..

[50]  R. Haralick,et al.  The Topographic Primal Sketch , 1983 .

[51]  M. Gage,et al.  The Curve Shortening Flow , 1987 .

[52]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[53]  Azriel Rosenfeld,et al.  Migration processes , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[54]  J. Troutman Variational Calculus with Elementary Convexity , 1983 .

[55]  Gérard G. Medioni,et al.  Hierarchical Decomposition and Axial Shape Description , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[57]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[58]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[59]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[60]  Benjamin B. Kimia,et al.  Shock-Based Reaction-Diffusion Bubbles for Image Segmentation , 1995, CVRMed.

[61]  Scott F. Thompson Growth models for shapes , 1994 .

[62]  Alok Gupta,et al.  Part description and segmentation using contour, surface, and volumetric primitives , 1989, Other Conferences.