Capsid-deficient alphaviruses generate propagative infectious microvesicles at the plasma membrane

[1]  M. Johansson Chikungunya on the move. , 2015, Trends in parasitology.

[2]  Xinran Liu,et al.  In vitro evolution of high-titer, virus-like vesicles containing a single structural protein , 2014, Proceedings of the National Academy of Sciences.

[3]  L. Ng,et al.  Prime-Boost Immunization Strategies against Chikungunya Virus , 2014, Journal of Virology.

[4]  K. Ljungberg,et al.  Kinetic and Phenotypic Analysis of CD8+ T Cell Responses after Priming with Alphavirus Replicons and Homologous or Heterologous Booster Immunizations , 2014, Journal of Virology.

[5]  E. Snapp,et al.  Imaging the Alphavirus Exit Pathway , 2014, Journal of Virology.

[6]  Jeroen A. A. Demmers,et al.  Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells , 2013, Proceedings of the National Academy of Sciences.

[7]  C. Emiliani,et al.  Signaling Pathways in Exosomes Biogenesis, Secretion and Fate , 2013, Genes.

[8]  F. Chisari,et al.  Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. , 2012, Cell host & microbe.

[9]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[10]  N. Raab-Traub,et al.  Microvesicles and Viral Infection , 2011, Journal of Virology.

[11]  György Nagy,et al.  Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles , 2011, Cellular and Molecular Life Sciences.

[12]  E. Frolova,et al.  Functional Sindbis Virus Replicative Complexes Are Formed at the Plasma Membrane , 2010, Journal of Virology.

[13]  Huiling Yang,et al.  Novel Hepatitis C Virus Reporter Replicon Cell Lines Enable Efficient Antiviral Screening against Genotype 1a , 2010, Antimicrobial Agents and Chemotherapy.

[14]  Pirjo Spuul,et al.  Phosphatidylinositol 3-Kinase-, Actin-, and Microtubule-Dependent Transport of Semliki Forest Virus Replication Complexes from the Plasma Membrane to Modified Lysosomes , 2010, Journal of Virology.

[15]  L. Ng,et al.  Chikungunya: a bending reality. , 2009, Microbes and infection.

[16]  E. Roine,et al.  The Single-Stranded DNA Genome of Novel Archaeal Virus Halorubrum Pleomorphic Virus 1 Is Enclosed in the Envelope Decorated with Glycoprotein Spikes , 2009, Journal of Virology.

[17]  C. Théry,et al.  Membrane vesicles as conveyors of immune responses , 2009, Nature Reviews Immunology.

[18]  Rune Matthiesen,et al.  Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. , 2008, Journal of proteome research.

[19]  E. Frolova,et al.  Different Types of nsP3-Containing Protein Complexes in Sindbis Virus-Infected Cells , 2008, Journal of Virology.

[20]  J. Prieto,et al.  Development of a new noncytopathic Semliki Forest virus vector providing high expression levels and stability. , 2008, Virology.

[21]  H. Kräusslich,et al.  More than one door – Budding of enveloped viruses through cellular membranes , 2007, FEBS Letters.

[22]  Aled Clayton,et al.  Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids , 2006, Current protocols in cell biology.

[23]  R. Cheng,et al.  Budding of alphaviruses. , 2004, Virus research.

[24]  B. Gowen,et al.  The Tailless Icosahedral Membrane Virus PRD1 Localizes the Proteins Involved in Genome Packaging and Injection at a Unique Vertex , 2003, Journal of Virology.

[25]  P. Auvinen,et al.  Biogenesis of the Semliki Forest Virus RNA Replication Complex , 2001, Journal of Virology.

[26]  J. Navaza,et al.  The Fusion Glycoprotein Shell of Semliki Forest Virus An Icosahedral Assembly Primed for Fusogenic Activation at Endosomal pH , 2001, Cell.

[27]  L. Xing,et al.  Membrane proteins organize a symmetrical virus , 2000, The EMBO journal.

[28]  M. Kielian,et al.  REFERENCES CONTENT ALERTS , 2000 .

[29]  S D Fuller,et al.  Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. , 2000, Molecular cell.

[30]  E. Gould,et al.  Recombinant Semliki Forest virus particles encoding the prME or NS1 proteins of louping ill virus protect mice from lethal challenge. , 1999, The Journal of general virology.

[31]  P. Liljeström,et al.  Two-Helper RNA System for Production of Recombinant Semliki Forest Virus Particles , 1999, Journal of Virology.

[32]  R. Johnston,et al.  Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. , 1997, Virology.

[33]  R. Kuhn,et al.  Alphavirus budding is dependent on the interaction between the nucleocapsid and hydrophobic amino acids on the cytoplasmic domain of the E2 envelope glycoprotein. , 1997, Virology.

[34]  M. Rossmann,et al.  Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. , 1996, Structure.

[35]  R. Kuhn,et al.  Identification of a region in the Sindbis virus nucleocapsid protein that is involved in specificity of RNA encapsidation , 1996, Journal of virology.

[36]  M. Vihinen,et al.  Aromatic interactions define the binding of the alphavirus spike to its nucleocapsid. , 1996, Structure.

[37]  M. Suomalainen,et al.  Structure-function relation of the NH2-terminal domain of the Semliki Forest virus capsid protein , 1995, Journal of virology.

[38]  S. Schlesinger,et al.  Translation of Sindbis virus mRNA: effects of sequences downstream of the initiating codon , 1994, Journal of virology.

[39]  J. Rose,et al.  Novel infectious particles generated by expression of the vesicular stomatitis virus glycoprotein from a self-replicating RNA , 1994, Cell.

[40]  M. Suomalainen,et al.  A Significantly Improved Semliki Forest Virus Expression System Based on Translation Enhancer Segments from the Viral Capsid Gene , 1994, Bio/Technology.

[41]  P. Liljeström,et al.  A tyrosine‐based motif in the cytoplasmic domain of the alphavirus envelope protein is essential for budding. , 1994, The EMBO journal.

[42]  J. H. Strauss,et al.  The alphaviruses: gene expression, replication, and evolution , 1994, Microbiological reviews.

[43]  J. H. Strauss,et al.  Nucleocapsid-glycoprotein interactions required for assembly of alphaviruses , 1994, Journal of virology.

[44]  M. Ryan,et al.  Foot‐and‐mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. , 1994, The EMBO journal.

[45]  C. Rice,et al.  Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs , 1993, Journal of virology.

[46]  R. Johnston,et al.  Three-dimensional structure of a membrane-containing virus. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Schlesinger,et al.  Deletion analysis of the capsid protein of Sindbis virus: identification of the RNA binding region , 1993, Journal of virology.

[48]  H. Garoff,et al.  Role of cell surface spikes in alphavirus budding , 1992, Journal of virology.

[49]  M. Suomalainen,et al.  Spike protein-nucleocapsid interactions drive the budding of alphaviruses , 1992, Journal of virology.

[50]  J. Wahlberg,et al.  Membrane fusion process of Semliki Forest virus. II: Cleavage-dependent reorganization of the spike protein complex controls virus entry , 1992, The Journal of cell biology.

[51]  P. Liljeström,et al.  A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon , 1991, Bio/Technology.

[52]  D. Huylebroeck,et al.  In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein modulates virus release , 1991, Journal of virology.

[53]  P. Liljeström,et al.  Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor , 1991, Journal of virology.

[54]  M. Kielian,et al.  Mechanisms of enveloped virus entry into cells. , 1990, Molecular biology & medicine.

[55]  T. Gadek,et al.  Evidence for specificity in the encapsidation of Sindbis virus RNAs , 1989, Journal of virology.

[56]  S. Baron,et al.  Postinfection therapy of arbovirus infections in mice , 1989, Antimicrobial Agents and Chemotherapy.

[57]  C. Rice,et al.  Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. , 1989, Science.

[58]  L. Figueiredo,et al.  Most alphaviruses share a conserved epitopic region on their nucleocapsid protein. , 1989, The Journal of general virology.

[59]  A. Helenius,et al.  Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses , 1981, The Journal of cell biology.

[60]  A Helenius,et al.  pH-dependent fusion between the Semliki Forest virus membrane and liposomes. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[61]  L. Dalgarno,et al.  The growth of two togaviruses in cultured mosquito and vertebrate cells. , 1973, The Journal of general virology.

[62]  G. Birnie,et al.  The use of batch-type zonal ultracentrifuge rotors for the isolation and purification of viruses. , 1968, The Journal of general virology.