The analysis of multivariate longitudinal data: A review

Longitudinal experiments often involve multiple outcomes measured repeatedly within a set of study participants. While many questions can be answered by modeling the various outcomes separately, some questions can only be answered in a joint analysis of all of them. In this article, we will present a review of the many approaches proposed in the statistical literature. Four main model families will be presented, discussed and compared. Focus will be on presenting advantages and disadvantages of the different models rather than on the mathematical or computational details.

[1]  Pranab K Sen,et al.  Estimating correlation by using a general linear mixed model: evaluation of the relationship between the concentration of HIV‐1 RNA in blood and semen , 2003, Statistics in medicine.

[2]  M. Stoolmiller,et al.  Antisocial Behavior, Delinquent Peer Association, and Unsupervised Wandering for Boys: Growth and Change from Childhood to Early Adolescence. , 1994, Multivariate behavioral research.

[3]  B. Jørgensen,et al.  State‐space models for multivariate longitudinal data of mixed types , 1996 .

[4]  Marieke E. Timmerman,et al.  Three-way component analysis with smoothness constraints , 2002 .

[5]  John B. Willett,et al.  Using Covariance Structure Analysis to Model Change over Time , 2000 .

[6]  Kanti V. Mardia,et al.  Families of Bivariate Distributions. , 1971 .

[7]  F. Oort,et al.  Three-mode models for multivariate longitudinal data. , 2001, The British journal of mathematical and statistical psychology.

[8]  J. Mcardle Dynamic but Structural Equation Modeling of Repeated Measures Data , 1988 .

[9]  G Molenberghs,et al.  Random-effects models for multivariate repeated measures , 2007, Statistical methods in medical research.

[10]  Emilio Ferrer,et al.  Alternative Structural Models for Multivariate Longitudinal Data Analysis , 2003 .

[11]  Shelley A. Blozis,et al.  On Fitting Nonlinear Latent Curve Models to Multiple Variables Measured Longitudinally , 2007 .

[12]  E. Metter,et al.  Gender differences in a longitudinal study of age-associated hearing loss. , 1995, The Journal of the Acoustical Society of America.

[13]  Gregory R. Hancock,et al.  An Illustration of Second-Order Latent Growth Models , 2001 .

[14]  Robert L. Strawderman,et al.  Use of the Probability Integral Transformation to Fit Nonlinear Mixed-Effects Models With Nonnormal Random Effects , 2006 .

[15]  L. Zhao,et al.  Correlated binary regression using a quadratic exponential model , 1990 .

[16]  D. Heitjan,et al.  Modelling repeated-series longitudinal data. , 1997, Statistics in medicine.

[17]  M. Daniels,et al.  Marginalized transition random effect models for multivariate longitudinal binary data , 2007 .

[18]  Andrzej T. Galecki,et al.  General class of covariance structures for two or more repeated factors in longitudinal data analysis , 1994 .

[19]  David A. Schoenfeld,et al.  A Random-Effects Model for Multiple Characteristics with Possibly Missing Data , 1997 .

[20]  J Rochon,et al.  Analyzing bivariate repeated measures for discrete and continuous outcome variables. , 1996, Biometrics.

[21]  Geert Molenberghs,et al.  Pseudo-likelihood inference for clustered binary data , 1997 .

[22]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[23]  Constantine Daskalakis,et al.  Regression analysis of multiple-source longitudinal outcomes: a "Stirling County" depression study. , 2002, American journal of epidemiology.

[24]  S Bandyopadhyay,et al.  A review of multivariate longitudinal data analysis , 2011, Statistical methods in medical research.

[25]  D S Nagin,et al.  Analyzing developmental trajectories of distinct but related behaviors: a group-based method. , 2001, Psychological methods.

[26]  S G Thompson,et al.  The analysis of repeated multivariate binary quality of life data: a hierarchical model approach , 2002, Statistical methods in medical research.

[27]  Daniel Commenges,et al.  Bivariate linear mixed models using SAS proc MIXED , 2002, Comput. Methods Programs Biomed..

[28]  Y. Matsuyama,et al.  Mixed models for bivariate response repeated measures data using Gibbs sampling. , 1997, Statistics in medicine.

[29]  Geert Verbeke,et al.  Joint modelling of multivariate longitudinal profiles: pitfalls of the random‐effects approach , 2004, Statistics in medicine.

[30]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[31]  Stephen A. Sivo,et al.  Multiple Indicator Stationary Time Series Models , 2001 .

[32]  Geert Verbeke,et al.  Joint models for longitudinal data , 2008 .

[33]  Geert Molenberghs,et al.  Random Effects Models for Longitudinal Data , 2010 .

[34]  D. Reboussin,et al.  Latent Transition Modeling of Progression of Health-Risk Behavior. , 1998, Multivariate behavioral research.

[35]  B. Muthén BEYOND SEM: GENERAL LATENT VARIABLE MODELING , 2002 .

[36]  B A Rosner,et al.  Analysis of longitudinally observed irregularly timed multivariate outcomes: regression with focus on cross-component correlation. , 2001, Statistics in medicine.

[37]  Alan Agresti A Model for Repeated Measurements of a Multivariate Binary Response , 1997 .

[38]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[39]  Marie Davidian,et al.  Inference on treatment effects from a randomized clinical trial in the presence of premature treatment discontinuation: the SYNERGY trial. , 2011, Biostatistics.

[40]  David Arenberg,et al.  Normal Human Aging: The Baltimore Longitudinal Study on Aging , 1984 .

[41]  Henk A. L. Kiers,et al.  Hierarchical relations between methods for simultaneous component analysis and a technique for rotation to a simple simultaneous structure , 1994 .

[42]  Gregory C. Reinsel,et al.  Estimation and Prediction in a Multivariate Random Effects Generalized Linear Model , 1984 .

[43]  Garrett M. Fitzmaurice,et al.  Analysis of longitudinal multiple‐source binary data using generalized estimating equations , 2004 .

[44]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[45]  Terry E. Duncan,et al.  A multivariate latent growth curve analysis of adolescent substance use , 1996 .

[46]  H. Goldstein Multilevel Statistical Models , 2006 .

[47]  N. Longford A FAST SCORING ALGORITHM FOR MAXIMUM LIKELIHOOD ESTIMATION IN UNBALANCED MIXED MODELS WITH NESTED RANDOM EFFECTS , 1987 .

[48]  R. Bosker Boekbespreking van "A.S. Bryk & S.W. Raudenbusch - Hierarchical linear models: Applications and data analysis methods" : Sage Publications, Newbury Parki, London/New Delhi 1992 , 1995 .

[49]  R. Bro,et al.  PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model , 1999 .

[50]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[51]  Shelley A Blozis,et al.  Structured latent curve models for the study of change in multivariate repeated measures. , 2004, Psychological methods.

[52]  Subhash R. Lele,et al.  A composite likelihood approach to semivariogram estimation , 1999 .

[53]  G. Molenberghs,et al.  Pseudolikelihood Modeling of Multivariate Outcomes in Developmental Toxicology , 1999 .

[54]  Geert Verbeke,et al.  High dimensional multivariate mixed models for binary questionnaire data , 2006 .

[55]  Geert Verbeke,et al.  Predicting renal graft failure using multivariate longitudinal profiles. , 2008, Biostatistics.

[56]  David Chan,et al.  The Conceptualization and Analysis of Change Over Time: An Integrative Approach Incorporating Longitudinal Mean and Covariance Structures Analysis (LMACS) and Multiple Indicator Latent Growth Modeling (MLGM) , 1998 .

[57]  Scott L. Zeger,et al.  A Class of Logistic Regression Models for Multivariate Binary Time Series , 1989 .

[58]  Xihong Lin,et al.  Latent Variable Models for Longitudinal Data with Multiple Continuous Outcomes , 2000, Biometrics.

[59]  S. Lele,et al.  A Composite Likelihood Approach to Binary Spatial Data , 1998 .

[60]  Daniel S. Nagin,et al.  Analyzing developmental trajectories: A semiparametric, group-based approach , 1999 .

[61]  R. Nelsen An Introduction to Copulas , 1998 .

[62]  Geert Molenberghs,et al.  A flexible joint modeling framework for longitudinal and time-to-event data with overdispersion , 2016, Statistical methods in medical research.

[63]  Richard J. Cook,et al.  Transition Models for Multivariate Longitudinal Binary Data , 2007 .

[64]  Geert Verbeke,et al.  Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles , 2006, Biometrics.

[65]  J. Taylor,et al.  A stochastic model for the analysis of bivariate longitudinal AIDS data. , 1997, Biometrics.

[66]  Geert Molenberghs,et al.  Longitudinal Data Analysis. Handbooks of Modern Statistical Methods , 2009 .

[67]  Yeow Meng Thum,et al.  Hierarchical Linear Models for Multivariate Outcomes , 1997 .

[68]  Frans J. Oort,et al.  Stochastic three‐mode models for mean and covariance structures , 1999 .

[69]  C. Morrell,et al.  Modelling hearing thresholds in the elderly. , 1991, Statistics in medicine.

[70]  L A Beckett,et al.  Multivariate longitudinal models for complex change processes , 2004, Statistics in medicine.

[71]  Ron Brookmeyer,et al.  Multidimensional Longitudinal Data: Estimating a Treatment Effect from Continuous, Discrete, or Time-to-Event Response Variables , 2000 .

[72]  G. Molenberghs,et al.  Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution , 1994 .

[73]  R. Plackett A Class of Bivariate Distributions , 1965 .

[74]  Donald Hedeker,et al.  A Mixed‐Effects Regression Model for Longitudinal Multivariate Ordinal Data , 2006, Biometrics.

[75]  C. McCulloch Joint modelling of mixed outcome types using latent variables , 2008, Statistical methods in medical research.

[76]  G. Molenberghs,et al.  Models for Discrete Longitudinal Data , 2005 .

[77]  Geert Molenberghs,et al.  Joint models for longitudinal data: Introduction and overview , 2008 .

[78]  Philippe Lambert,et al.  A copula‐based model for multivariate non‐normal longitudinal data: analysis of a dose titration safety study on a new antidepressant , 2002, Statistics in medicine.

[79]  Geert Molenberghs,et al.  A Family of Generalized Linear Models for Repeated Measures With Normal and Conjugate Random Effects (pp.188) , 2010, 1101.0990.

[80]  Peter C. M. Molenaar,et al.  A dynamic factor model for the analysis of multivariate time series , 1985 .

[81]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[82]  P. Diggle,et al.  Modelling multivariate binary data with alternating logistic regressions , 1993 .

[83]  Marie Davidian,et al.  Nonlinear Models for Repeated Measurement Data , 1995 .

[84]  Geert Molenberghs,et al.  Marginal correlation from an extended random-effects model for repeated and overdispersed counts , 2011 .

[85]  J. Fozard,et al.  Age changes in pure-tone hearing thresholds in a longitudinal study of normal human aging. , 1990, The Journal of the Acoustical Society of America.

[86]  K. Land,et al.  AGE, CRIMINAL CAREERS, AND POPULATION HETEROGENEITY: SPECIFICATION AND ESTIMATION OF A NONPARAMETRIC, MIXED POISSON MODEL* , 1993 .

[87]  Patricio Cumsille,et al.  Second-order latent growth models. , 2001 .

[88]  Marieke E. Timmerman,et al.  Four simultaneous component models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences , 2003 .

[89]  I. Rossman,et al.  Normal Human Aging: The Baltimore Longitudinal Study of Aging , 1986 .

[90]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[91]  T R Ten Have,et al.  Mixed Effects Models with Bivariate and Univariate Association Parameters for Longitudinal Bivariate Binary Response Data , 1999, Biometrics.

[92]  Linda M. Collins,et al.  New methods for the analysis of change , 2001 .

[93]  Barry C. Arnold,et al.  PSEUDOLIKELIHOOD ESTIMATION : SOME EXAMPLES , 2016 .

[94]  Luc Duchateau and Palul Janssen,et al.  The frailty mode , 2013 .

[95]  Carlo Gaetan,et al.  Composite likelihood methods for space-time data , 2006 .

[96]  G. Molenberghs,et al.  Longitudinal data analysis , 2008 .

[97]  Geert Verbeke,et al.  Joint models for high-dimensional longitudinal data , 2008 .

[98]  S M Gray,et al.  Estimating a treatment effect from multidimensional longitudinal data. , 1998, Biometrics.

[99]  R. MacCallum,et al.  Studying Multivariate Change Using Multilevel Models and Latent Curve Models. , 1997, Multivariate behavioral research.

[100]  Lei Liu,et al.  A likelihood reformulation method in non‐normal random effects models , 2008, Statistics in medicine.

[101]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[102]  Jeffrey R. Harring A Nonlinear Mixed Effects Model for Latent Variables , 2009 .