Revised CHARMM force field parameters for iron‐containing cofactors of photosystem II

Photosystem II is a complex protein–cofactor machinery that splits water molecules into molecular oxygen, protons, and electrons. All‐atom molecular dynamics simulations have the potential to contribute to our general understanding of how photosystem II works. To perform reliable all‐atom simulations, we need accurate force field parameters for the cofactor molecules. We present here CHARMM bonded and non‐bonded parameters for the iron‐containing cofactors of photosystem II that include a six‐coordinated heme moiety coordinated by two histidine groups, and a non‐heme iron complex coordinated by bicarbonate and four histidines. The force field parameters presented here give water interaction energies and geometries in good agreement with the quantum mechanical target data. © 2017 Wiley Periodicals, Inc.

[1]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[2]  C. Berthomieu,et al.  Iron coordination in photosystem II: interaction between bicarbonate and the QB pocket studied by Fourier transform infrared spectroscopy. , 2001, Biochemistry.

[3]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[4]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[5]  Christophe Lechauve,et al.  The crystal structure of wild-type human brain neuroglobin reveals flexibility of the disulfide bond that regulates oxygen affinity. , 2014, Acta crystallographica. Section D, Biological crystallography.

[6]  M. Sugiura,et al.  Assembly of oxygen-evolving Photosystem II efficiently occurs with the apo-Cytb559 but the holo-Cytb559 accelerates the recovery of a functional enzyme upon photoinhibition. , 2015, Biochimica et biophysica acta.

[7]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[8]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[9]  Ana-Nicoleta Bondar,et al.  Extended protein/water H-bond networks in photosynthetic water oxidation. , 2012, Biochimica et biophysica acta.

[10]  Giordano Mancini,et al.  An X-ray diffraction and X-ray absorption spectroscopy joint study of neuroglobin. , 2008, Archives of biochemistry and biophysics.

[11]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[12]  Athina Zouni,et al.  The nonheme iron in photosystem II , 2013, Photosynthesis Research.

[13]  Mikael P. Johansson,et al.  Charge parameterization of the metal centers in cytochrome c oxidase , 2008, J. Comput. Chem..

[14]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[15]  Mark A. Ratner,et al.  6-31G * basis set for atoms K through Zn , 1998 .

[16]  H. Chu,et al.  The Roles of Cytochrome b559 in Assembly and Photoprotection of Photosystem II Revealed by Site-Directed Mutagenesis Studies , 2016, Front. Plant Sci..

[17]  S. Vinogradov,et al.  Neuroglobins, Pivotal Proteins Associated with Emerging Neural Systems and Precursors of Metazoan Globin Diversity , 2013, The Journal of Biological Chemistry.

[18]  F. Walker,et al.  Models of the bis-histidine-ligated electron-transferring cytochromes. Comparative geometric and electronic structure of low-spin ferro- and ferrihemes. , 2004, Chemical reviews.

[19]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[20]  Klaus Schulten,et al.  Rapid parameterization of small molecules using the force field toolkit , 2013, J. Comput. Chem..

[21]  Holger Dau,et al.  Carboxylate Shifts Steer Interquinone Electron Transfer in Photosynthesis* , 2010, The Journal of Biological Chemistry.

[22]  Gary W Brudvig,et al.  Redox reactions of the non-heme iron in photosystem II: an EPR spectroscopic study. , 2008, Biochemistry.

[23]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[24]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[25]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[26]  B. Brooks,et al.  Temperature dependence of dynamics of hydrated myoglobin. Comparison of force field calculations with neutron scattering data. , 1990, Journal of molecular biology.

[27]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[28]  Klaus Gerwert,et al.  Coupling of light-induced electron transfer to proton uptake in photosynthesis , 2003, Nature Structural Biology.

[29]  Ana-Nicoleta Bondar,et al.  Dynamic Carboxylate/Water Networks on the Surface of the PsbO Subunit of Photosystem II. , 2015, The journal of physical chemistry. B.

[30]  M. Brunori,et al.  The structure of murine neuroglobin: Novel pathways for ligand migration and binding , 2004, Proteins.

[31]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[32]  Kenneth D. Jordan,et al.  Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer , 1994 .

[33]  Lu Zhang,et al.  Force field development for cofactors in the photosystem II , 2012, J. Comput. Chem..

[34]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[35]  E. Berry,et al.  Bis-histidine-coordinated hemes in four-helix bundles: how the geometry of the bundle controls the axial imidazole plane orientations in transmembrane cytochromes of mitochondrial Complexes II and III and related proteins , 2008, JBIC Journal of Biological Inorganic Chemistry.

[36]  Alessandra Pesce,et al.  Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. , 2003, Structure.

[37]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[38]  John E Straub,et al.  Resilience of the iron environment in heme proteins. , 2008, Biophysical journal.

[39]  Ana-Nicoleta Bondar,et al.  Revised force-field parameters for chlorophyll-a, pheophytin-a and plastoquinone-9. , 2015, Journal of molecular graphics & modelling.

[40]  Ana-Nicoleta Bondar,et al.  Dynamics of the Plasma Membrane Proton Pump , 2014, The Journal of Membrane Biology.

[41]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[42]  Keisuke Kawakami,et al.  Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å , 2011, Nature.

[43]  Ana-Nicoleta Bondar,et al.  Proton-coupled dynamics in lactose permease. , 2012, Structure.

[44]  Markus Meuwly,et al.  NO rebinding to myoglobin: a reactive molecular dynamics study. , 2002, Biophysical chemistry.

[45]  Klaus Schulten,et al.  Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions , 1991 .

[46]  M Karplus,et al.  Temperature dependence of the structure and dynamics of myoglobin. A simulation approach. , 1990, Journal of molecular biology.

[47]  Krzysztof Kuczera,et al.  Ligand binding and protein relaxation in heme proteins: a room temperature analysis of nitric oxide geminate recombination , 1991 .

[48]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[49]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[50]  Kunio Hirata,et al.  Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses , 2014, Nature.

[51]  Zaida Luthey-Schulten,et al.  Classical force field parameters for the heme prosthetic group of cytochrome c , 2004, J. Comput. Chem..

[52]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .