Deriving priorities from inconsistent PCM using network algorithms

In several multiobjective decision problems Pairwise Comparison Matrices (PCM) are applied to evaluate the decision variants. The problem that arises very often is the inconsistency of a given PCM. In such a situation it is important to approximate the PCM with a consistent one. One of the approaches is to minimize the distance between the matrices, most often the Euclidean distance. In the paper we consider the problem of minimizing the maximum distance. After applying the logarithmic transformation we are able to formulate the obtained subproblem as a Shortest Path Problem and solve it more efficiently. We analyze the structure of the set of optimal solutions and prove some of its properties. This allows us to provide an iterative algorithm that results in a unique, Pareto-efficient solution.

[1]  M. Dowell,et al.  A modified regula falsi method for computing the root of an equation , 1971 .

[2]  Lajos Rónyai,et al.  On optimal completion of incomplete pairwise comparison matrices , 2010, Math. Comput. Model..

[3]  Eng Ung Choo,et al.  A common framework for deriving preference values from pairwise comparison matrices , 2004, Comput. Oper. Res..

[4]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[5]  Marcin Anholcer,et al.  Algorithm for Deriving Priorities from Inconsistent Pairwise Comparison Matrices , 2012 .

[6]  Thomas Sphicopoulos,et al.  Theoretical estimation of the probability of weight rank reversal in pairwise comparisons , 2016, Eur. J. Oper. Res..

[7]  Wataru Mogi,et al.  OPTIMUM PRIORITY WEIGHT ESTIMATION METHOD FOR PAIRWISE COMPARISON MATRIX , 2009 .

[8]  Eduardo Conde,et al.  Inferring Efficient Weights from Pairwise Comparison Matrices , 2006, Math. Methods Oper. Res..

[9]  Teresa Wu,et al.  An intelligent decomposition of pairwise comparison matrices for large-scale decisions , 2014, Eur. J. Oper. Res..

[10]  Sándor Bozóki,et al.  Solution of the least squares method problem of pairwise comparison matrices , 2008, Central Eur. J. Oper. Res..

[11]  James W. Kolari,et al.  Deriving weights from general pairwise comparison matrices , 2008, Math. Soc. Sci..

[12]  Åke Björck,et al.  A new high order method of regula falsi type for computing a root of an equation , 1973 .

[13]  I. L. Tomashevskii,et al.  Eigenvector ranking method as a measuring tool: Formulas for errors , 2015, Eur. J. Oper. Res..

[14]  Tamás Rapcsák,et al.  On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices , 2008, J. Glob. Optim..

[15]  Emilio Carrizosa,et al.  An exact global optimization method for deriving weights from pairwise comparison matrices , 2007, J. Glob. Optim..

[16]  Waldemar W. Koczkodaj,et al.  A simplified implementation of the least squares solution for pairwise comparisons matrices , 2011, Central Eur. J. Oper. Res..

[17]  Jacinto González-Pachón,et al.  Consistency-driven approximation of a pairwise comparison matrix , 2003, Kybernetika.

[18]  János Fülöp,et al.  A method for approximating pairwise comparison matrices by consistent matrices , 2008, J. Glob. Optim..

[19]  P. Ontario A Different Perspective on a Scale for Pairwise Comparisons , 2010 .

[20]  Michele Fedrizzi,et al.  Boundary properties of the inconsistency of pairwise comparisons in group decisions , 2014, Eur. J. Oper. Res..

[21]  Thomas Sphicopoulos,et al.  Convergence properties and practical estimation of the probability of rank reversal in pairwise comparisons for multi-criteria decision making problems , 2015, Eur. J. Oper. Res..

[22]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[23]  Michele Fedrizzi,et al.  Axiomatic properties of inconsistency indices for pairwise comparisons , 2013, J. Oper. Res. Soc..

[24]  W. W. Koczkodaj A new definition of consistency of pairwise comparisons , 1993 .

[25]  Andrew V. Goldberg,et al.  Negative-Cycle Detection Algorithms , 1996, ESA.

[26]  R. Kalaba,et al.  A comparison of two methods for determining the weights of belonging to fuzzy sets , 1979 .

[27]  Erhan Erkut,et al.  On sensitivity analysis in the analytic hierarchy process , 1991 .

[28]  László Csató,et al.  An application of incomplete pairwise comparison matrices for ranking top tennis players , 2014, Eur. J. Oper. Res..

[29]  S. Bozóki,et al.  Inefficient weights from pairwise comparison matrices with arbitrarily small inconsistency , 2014 .

[30]  Chang-Chun Lin,et al.  A revised framework for deriving preference values from pairwise comparison matrices , 2007, Eur. J. Oper. Res..

[31]  Roman Słowiński,et al.  Modeling assignment-based pairwise comparisons within integrated framework for value-driven multiple criteria sorting , 2015, Eur. J. Oper. Res..

[32]  John A. Keane,et al.  Contribution of individual judgments toward inconsistency in pairwise comparisons , 2015, Eur. J. Oper. Res..