Shape optimization methods for the inverse obstacle problem with generalized impedance boundary conditions

We aim to reconstruct an inclusion ω immersed in a perfect fluid flowing in a larger bounded domain Ω via boundary measurements on ∂Ω. The obstacle ω is assumed to have a thin layer and is then modeled using generalized boundary conditions (precisely Ventcel boundary conditions). We first obtain an identifiability result (i.e. the uniqueness of the solution of the inverse problem) for annular configurations through explicit computations. Then, this inverse problem of reconstructing ω is studied, thanks to the tools of shape optimization by minimizing a least-squares-type cost functional. We prove the existence of the shape derivatives with respect to the domain ω and characterize the gradient of this cost functional in order to make a numerical resolution. We also characterize the shape Hessian and prove that this inverse obstacle problem is unstable in the following sense: the functional is degenerate for highly oscillating perturbations. Finally, we present some numerical simulations in order to confirm and extend our theoretical results.

[1]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[2]  Frédéric Valentin,et al.  Effective Boundary Conditions for Laminar Flows over Periodic Rough Boundaries , 1998 .

[3]  Houssem Haddar,et al.  GENERALIZED IMPEDANCE BOUNDARY CONDITIONS FOR SCATTERING BY STRONGLY ABSORBING OBSTACLES: THE SCALAR CASE , 2005 .

[4]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .

[5]  Jaime H. Ortega,et al.  Identification of immersed obstacles via boundary measurements , 2005 .

[6]  R. Kress,et al.  Nonlinear integral equations and the iterative solution for an inverse boundary value problem , 2005 .

[7]  Houssem Haddar,et al.  GENERALIZED IMPEDANCE BOUNDARY CONDITIONS FOR SCATTERING PROBLEMS FROM STRONGLY ABSORBING OBSTACLES: THE CASE OF MAXWELL'S EQUATIONS , 2008 .

[8]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[9]  Michel Dambrine,et al.  On Second Order Shape Optimization Methods for Electrical Impedance Tomography , 2007, SIAM J. Control. Optim..

[10]  M. Dambrine,et al.  Persistency of wellposedness of Ventcel’s boundary value problem under shape deformations , 2012 .

[11]  Helmut Harbrecht,et al.  A regularized Newton method in electrical impedance tomography using shape Hessian information , 2005 .

[12]  D. Givoli Non-reflecting boundary conditions , 1991 .

[13]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[14]  Fabien Caubet,et al.  DETECTING AN OBSTACLE IMMERSED IN A FLUID BY SHAPE OPTIMIZATION METHODS , 2011 .

[15]  M. Dambrine,et al.  ON THE ERSATZ MATERIAL APPROXIMATION IN LEVEL-SET METHODS , 2010 .

[16]  Fabien Caubet,et al.  Instability of an Inverse Problem for the Stationary Navier-Stokes Equations , 2013, SIAM J. Control. Optim..

[17]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[18]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[19]  José M. Galán,et al.  Nonreflecting Boundary Conditions for the Nonlinear , 2005 .

[20]  Generalized impedance boundary condition at high frequency for a domain with thin layer: the circular case , 2007 .

[21]  Xavier Antoine,et al.  Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering , 2005 .

[22]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[23]  Keddour Lemrabet,et al.  The Effect of a Thin Coating on the Scattering of a Time-Harmonic Wave for the Helmholtz Equation , 1996, SIAM J. Appl. Math..

[24]  V. Bacchelli,et al.  Uniqueness for the determination of unknown boundary and impedance with the homogeneous Robin condition , 2008 .

[25]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[26]  Juan Luis Vázquez,et al.  On the Laplace equation with dynamical boundary conditions of reactive–diffusive type , 2009 .

[27]  Virginie Bonnaillie-Noël,et al.  On Generalized Ventcel's Type Boundary Conditions for Laplace Operator in a Bounded Domain , 2010, SIAM J. Math. Anal..

[28]  Fioralba Cakoni,et al.  Integral equations for inverse problems in corrosion detection from partial Cauchy data , 2007 .

[29]  Fabien Caubet,et al.  A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid , 2013 .

[30]  F. Caubet D ETECTING AN OBSTACLE IMMERSED IN A FLUID : THE S TOKES CASE , 2011 .

[31]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[32]  Houssem Haddar,et al.  Effective boundary conditions for thin ferromagnetic coatings. Asymptotic analysis of the 1D model , 2001 .

[33]  Vladimir Maz’ya,et al.  Theory of multipliers in spaces of differentiable functions , 1983 .

[34]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[35]  Houssem Haddar,et al.  Stable reconstruction of generalized impedance boundary conditions , 2011, 1307.5746.

[36]  Willi Jäger,et al.  On the Roughness-Induced Effective Boundary Conditions for an Incompressible Viscous Flow , 2001 .

[37]  Fioralba Cakoni,et al.  Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition , 2012 .

[38]  Houssem Haddar,et al.  On Simultaneous Identification of the Shape and Generalized Impedance Boundary Condition in Obstacle Scattering , 2012, SIAM J. Sci. Comput..

[39]  Houssem Haddar,et al.  Identification of generalized impedance boundary conditions in inverse scattering problems , 2010 .

[40]  M. C. Delfour,et al.  Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.

[41]  Karsten Eppler,et al.  Detecting perfectly insulated obstacles by shape optimization techniques of order two , 2007 .

[42]  F. Murat,et al.  Sur le controle par un domaine géométrique , 1976 .

[43]  J. Zolésio,et al.  Shape Sensitivity Analysis of Variational Inequalities , 1992 .