Linking micro- and macro-evolution at the cell type level: a view from the lophotrochozoan Platynereis dumerilii.

Ever since the origin of the first metazoans over 600 million years ago, cell type diversification has been driven by micro-evolutionary processes at population level, leading to macro-evolution changes above species level. In this review, we introduce the marine annelid Platynereis dumerilii, a member of the lophotrochozoan clade (a key yet most understudied superphylum of bilaterians), as a suitable model system for the simultaneous study, at cellular resolution, of macro-evolutionary processes across phyla and of micro-evolutionary processes across highly polymorphic populations collected worldwide. Recent advances in molecular and experimental techniques, easy maintenance and breeding, and the fast, synchronous and stereotypical development have facilitated the establishment of Platynereis as one of the leading model species in the eco-evo-devo field. Most importantly, Platynereis allows the combination of expression profiling, morphological and physiological characterization at the single cell level. Here, we discuss recent advances in the collection of -omics data for the lab strain and for natural populations collected world-wide that can be integrated with population-specific cellular analyses to result in a cellular atlas integrating genetic, phenotypic and ecological variation. This makes Platynereis a tractable system to begin understanding the interplay between macro- and micro-evolutionary processes and cell type diversity.

[1]  P. Brindley,et al.  Integration of reporter transgenes into Schistosoma mansoni chromosomes mediated by pseudotyped murine leukemia virus , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  G. Giribet,et al.  Assembling the lophotrochozoan (=spiralian) tree of life , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Eric Ross,et al.  SmedGD: the Schmidtea mediterranea genome database , 2007, Nucleic Acids Res..

[4]  J. Hailman Wonderful Life: The Burgess Shale and the Nature of History, Stephen Jay Gould. W. W. Norton, New York (1989), 347, Price $19.95 (U.S.A.), $27.95 (Canada) , 1991 .

[5]  M. Martindale,et al.  A comprehensive fate map by intracellular injection of identified blastomeres in the marine polychaete Capitella teleta , 2010, EvoDevo.

[6]  Natascha Hill,et al.  Phylogenomic analyses unravel annelid evolution , 2011, Nature.

[7]  Hideo Aoki,et al.  Draft Genome of the Pearl Oyster Pinctada fucata: A Platform for Understanding Bivalve Biology , 2012, DNA research : an international journal for rapid publication of reports on genes and genomes.

[8]  S. Lindsay,et al.  Divergence between populations of a monogamous polychaete with male parental care: Premating isolation and chromosome variation , 1990 .

[9]  E. Pierson,et al.  Zostera marina spathes as a habitat for Platynereis dumerilii (Audouin and Milne-Edwards, 1834) , 1979 .

[10]  D. Arendt,et al.  Ciliary Photoreceptors with a Vertebrate-Type Opsin in an Invertebrate Brain , 2004, Science.

[11]  A. Dorresteijn,et al.  A morphometric comparison of dissimilar early development in sibling species of Platynereis (Annelida, Polychaeta) , 1992, Roux's archives of developmental biology.

[12]  High resolution cell lineage tracing reveals developmental variability in leech , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[13]  A. Huvet,et al.  In Vivo RNA Interference of a Gonad-Specific Transforming Growth Factor-β in the Pacific Oyster Crassostrea gigas , 2012, Marine Biotechnology.

[14]  E. Seaver,et al.  Genomic Organization and Expression Demonstrate Spatial and Temporal Hox Gene Colinearity in the Lophotrochozoan Capitella sp. I , 2008, PloS one.

[15]  R. P. Kostyuchenko,et al.  The segmental pattern of otx, gbx, and Hox genes in the annelid Platynereis dumerilii , 2011, Evolution & development.

[16]  K. Wada Number and gross morphology of chromosomes in the pearl oyster, Pinctada fucata (Gould), collected from two regions of Japan , 1976 .

[17]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[18]  G. Bellan Relationship of pollution to rocky substratum polychaetes on the French Mediterranean coast , 1980 .

[19]  J. W. Valentine Late Precambrian bilaterians: grades and clades. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[20]  E. Davidson,et al.  Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins. , 2007, Developmental biology.

[21]  T. Münch,et al.  Neuropeptides regulate swimming depth of Platynereis larvae , 2011, Proceedings of the National Academy of Sciences.

[22]  C. Jubin,et al.  Features of the ancestral bilaterian inferred from Platynereis dumerilii ParaHox genes , 2009, BMC Biology.

[23]  D. Dixon,et al.  The polychaete Platynereis dumerilii (Audouin and Milne-Edwards): a new species for assessing the hazardous potential of chemicals in the marine environment. , 1995, Ecotoxicology and environmental safety.

[24]  Mi Hye Song,et al.  Expression and function of an even-skipped homolog in the leech Helobdella robusta. , 2002, Development.

[25]  Detlev Arendt,et al.  The ‘division of labour’ model of eye evolution , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  Qiang Wang,et al.  The oyster genome reveals stress adaptation and complexity of shell formation , 2012, Nature.

[27]  Awadhesh N. Jha,et al.  The chromosomes Of Platynereis dumerilii (Polychaeta: Nereidae) , 1995, Journal of the Marine Biological Association of the United Kingdom.

[28]  P. Bork,et al.  Vertebrate-Type Intron-Rich Genes in the Marine Annelid Platynereis dumerilii , 2005, Science.

[29]  J. Cichocka,et al.  Biological diversity of leeches (Clitellata: Hirudinida) based on characteristics of the karyotype. , 2008, Wiadomosci parazytologiczne.

[30]  S. Evans,et al.  Stability and lability in the evolution of behaviour in nereid polychaetes , 1980, Animal Behaviour.

[31]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[32]  P. Holland,et al.  Extensive chordate and annelid macrosynteny reveals ancestral homeobox gene organization. , 2012, Molecular biology and evolution.

[33]  John P. Overington,et al.  The genome of the blood fluke Schistosoma mansoni , 2009, Nature.

[34]  M. Gambi,et al.  Variation in Genome Size in Benthic Polychaetes: Systematic and Ecological Relationships , 1997, Journal of the Marine Biological Association of the United Kingdom.

[35]  Gáspár Jékely,et al.  Cellular resolution expression profiling using confocal detection of NBT/BCIP precipitate by reflection microscopy. , 2007, BioTechniques.

[36]  Alex A. Pollen,et al.  The genomic basis of adaptive evolution in threespine sticklebacks , 2012, Nature.

[37]  A. Dorresteijn,et al.  The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[38]  H. Hausen,et al.  Mechanism of phototaxis in marine zooplankton , 2008, Nature.

[39]  Kenneth K. Lopiano,et al.  RNA-seq: technical variability and sampling , 2011, BMC Genomics.

[40]  C. Ackermann,et al.  Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta) , 2005, Journal of morphology.

[41]  D. Weisblat,et al.  Evolutionary dynamics of the wnt gene family: a lophotrochozoan perspective. , 2010, Molecular biology and evolution.

[42]  M. Pala,et al.  From morphology and karyology to molecules. New methods for taxonomical identification of asexual populations of freshwater planarians. A tribute to Professor Mario Benazzi , 1999 .

[43]  Raju Tomer,et al.  Profiling by Image Registration Reveals Common Origin of Annelid Mushroom Bodies and Vertebrate Pallium , 2010, Cell.

[44]  P. Bork,et al.  A Holistic Approach to Marine Eco-Systems Biology , 2011, PLoS biology.

[45]  D. Weisblat,et al.  Applications of mRNA injections for analyzing cell lineage and asymmetric cell divisions during segmentation in the leech Helobdella robusta , 2005, Development.

[46]  Peer Bork,et al.  Ancient animal microRNAs and the evolution of tissue identity , 2010, Nature.

[47]  Thorsten Henrich,et al.  The normal development of Platynereis dumerilii (Nereididae, Annelida) , 2010, Frontiers in Zoology.

[48]  B. Rhode Development and differentiation of the eye in Platynereis dumerilii (Annelida, Polychaeta) , 1992, Journal of morphology.

[49]  D. Arendt The evolution of cell types in animals: emerging principles from molecular studies , 2008, Nature Reviews Genetics.

[50]  M. Gambi,et al.  Genome size in polychaetes: relationship with body length and life habit , 1994 .

[51]  Brian M. Suzuki,et al.  RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening , 2010, PLoS neglected tropical diseases.

[52]  T. Ohta,et al.  Role of gene duplication in evolution. , 1989, Genome.

[53]  Philipp J. Keller,et al.  Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy , 2012, Nature Methods.

[54]  Dawei Li,et al.  The sequence and de novo assembly of the giant panda genome , 2010, Nature.

[55]  D. Arendt,et al.  Hedgehog Signaling Regulates Segment Formation in the Annelid Platynereis , 2010, Science.

[56]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[57]  H. Hausen,et al.  Conserved Sensory-Neurosecretory Cell Types in Annelid and Fish Forebrain: Insights into Hypothalamus Evolution , 2007, Cell.

[58]  D. Arendt,et al.  Molecular Architecture of Annelid Nerve Cord Supports Common Origin of Nervous System Centralization in Bilateria , 2007, Cell.

[59]  P. Hebert,et al.  Evolutionary implications of the relationship between genome size and body size in flatworms and copepods , 2000, Heredity.

[60]  Karen I. Stocks,et al.  About the Ocean Biogeographic Information System , 2007 .

[61]  A. Sánchez Alvarado,et al.  Double-stranded RNA specifically disrupts gene expression during planarian regeneration. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Arendt,et al.  Evolution of the bilaterian larval foregut , 2001, Nature.

[63]  A. Dorresteijn Quantitative analysis of cellular differentiation during early embryogenesis ofPlatynereis dumerilii , 1990, Roux's archives of developmental biology.

[64]  T. Ohta Evolution by gene duplication and compensatory advantageous mutations. , 1988, Genetics.

[65]  M. Boyle,et al.  Clustered Fox genes in lophotrochozoans and the evolution of the bilaterian Fox gene cluster. , 2010, Developmental biology.

[66]  D. Arendt,et al.  Duplication of the ribosomal gene cluster in the marine polychaete Platynereis dumerilii correlates with ITS polymorphism , 2007, Journal of the Marine Biological Association of the United Kingdom.

[67]  A. I. Grossman,et al.  Conventional giemsa and C-banded karyotypes of Schistosoma mansoni and S. rodhaini. , 1981, The Journal of parasitology.

[68]  J. Cotton,et al.  The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[69]  Vincent J. Lynch,et al.  Adaptive changes in the transcription factor HoxA-11 are essential for the evolution of pregnancy in mammals , 2008, Proceedings of the National Academy of Sciences.

[70]  Nuclear DNA amounts in polychaete annelids , 1972, Experientia.

[71]  J. Hardege Nereidid polychaetes as model organisms for marine chemical ecology , 1999, Hydrobiologia.

[72]  R. Carroll,et al.  Paleontology: The Record of Life , 1989 .

[73]  C. Thiriot-Quiévreux,et al.  Genetics of growth rate variation in bivalves: aneuploidy and heterozygosity effects in a Crassostrea gigas family , 1992 .

[74]  S. Mills,et al.  Karyotypes of Capitella sibling species, and a several species in the related genera Capitellides and Capitomastus (Polychaeta) , 1987 .

[75]  J. Lake,et al.  Evidence from 18S ribosomal DNA that the lophophorates are protostome animals , 1995, Science.