On the dynamic nature of Mo sites for methane dehydroaromatization† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc01263f

The dynamic catalytic site on Mo/HZSM-5 for methane dehydroaromatization is formed during the initial phases of the reaction. Labelling experiments show that carbon from the carbidic active site is incorporated into the final products.

[1]  R. A. Santen,et al.  13C and 23Na Solid-state NMR study on zeolite Y loaded with Mo(CO)6 , 1997 .

[2]  C. Peden,et al.  Direct observation of the active center for methane dehydroaromatization using an ultrahigh field 95Mo NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[3]  S. Linic,et al.  A Viewpoint on Direct Methane Conversion to Ethane and Ethylene Using Oxidative Coupling on Solid Catalysts , 2016 .

[4]  M. Fedin,et al.  Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSM‐5 , 2017, Angewandte Chemie.

[5]  X. Bao,et al.  Mo/HMCM-22 Catalysts for Methane Dehydroaromatization: A Multinuclear MAS NMR Study , 2001 .

[6]  Malcolm L. H. Green,et al.  Preparation of Molybdenum Carbides Using Butane and Their Catalytic Performance , 2000 .

[7]  Alexis T. Bell,et al.  The characterization of carbonaceous species on ruthenium catalysts with 13C nuclear magnetic resonance spectroscopy , 1985 .

[8]  F. Kapteijn,et al.  Relevance of the Mo-precursor state in H-ZSM-5 for methane dehydroaromatization , 2018 .

[9]  Malcolm L. H. Green,et al.  Effect of carburising agent on the structure of molybdenum carbides , 2001 .

[10]  F. Kapteijn,et al.  Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts , 2015, Nature Communications.

[11]  Xin Chen,et al.  Identification of the coke accumulation and deactivation sites of Mo2C/HZSM-5 catalyst in CH4 dehydroaromatization , 2004 .

[12]  X. Bao,et al.  MAS NMR, ESR and TPD studies of Mo/HZSM‐5 catalysts: evidence for the migration of molybdenum species into the zeolitic channels , 2000 .

[13]  Yoshizo Suzuki,et al.  The distribution of coke formed over a multilayer Mo/HZSM-5 fixed bed in H2 co-fed methane aromatization at 1073 K: Exploration of the coking pathway , 2015 .

[14]  J. Gracia,et al.  Mars-van Krevelen-like Mechanism of CO Hydrogenation on an Iron Carbide Surface , 2009 .

[15]  Yide Xu,et al.  Recent advances in methane dehydro-aromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions , 1999 .

[16]  B. Weckhuysen,et al.  Conversion of Methane to Benzene over Transition Metal Ion ZSM-5 Zeolites: II. Catalyst Characterization by X-Ray Photoelectron Spectroscopy , 1998 .

[17]  K. Cheng,et al.  The role of carbon atoms of supported iron carbides in Fischer–Tropsch synthesis , 2015 .

[18]  Shirun Yan,et al.  ε-Iron carbide as a low-temperature Fischer–Tropsch synthesis catalyst , 2014, Nature Communications.

[19]  W. Marsden I and J , 2012 .

[20]  M. White,et al.  Synthesis of gasoline-range hydrocarbons over Mo/HZSM-5 catalysts , 2009 .

[21]  J. Lunsford,et al.  Catalytic conversion of methane to benzene over Mo/ZSM-5 , 1996 .

[22]  Emiel J. M. Hensen,et al.  Methane Dehydroaromatization by Mo/HZSM-5: Mono- or Bifunctional Catalysis? , 2017 .

[23]  P. Mériaudeau,et al.  Aromatization of methane over zeolite supported molybdenum: active sites and reaction mechanism , 2002 .

[24]  F. Solymosi,et al.  Dehydrogenation of methane on supported molybdenum oxides. Formation of benzene from methane , 1995 .

[25]  B. Weckhuysen,et al.  Conversion of methane to benzene over transition metal ion ZSM-5 zeolites : I. Catalytic characterization , 1998 .

[26]  X. Bao,et al.  Identification of Mo active species for methane dehydro-aromatization over Mo/HZSM-5 catalysts in the absence of oxygen: 1H MAS NMR and EPR investigations , 2006 .

[27]  C. Au,et al.  XPS, XAES, and TG/DTA characterization of deposited carbon in methane dehydroaromatization over Ga–Mo/ZSM-5 catalyst , 2007 .

[28]  X. Bao,et al.  Solid state 13C NMR studies of methane dehydroaromatization reaction on Mo/HZSM-5 and W/HZSM-5 catalysts. , 2002, Chemical communications.

[29]  Weiping Ding,et al.  Methane Conversion to Aromatics on Mo/H-ZSM5: Structure of Molybdenum Species in Working Catalysts , 2001 .

[30]  X. Bao,et al.  Density Functional Theory Study on Structure of Molybdenum Carbide Loaded on MCM-22 Zeolite and Mechanism for Methane Activation , 2007 .

[31]  Stanley W Botchway,et al.  Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSM‐5 as Revealed by Operando X‐Ray Methods , 2016, Angewandte Chemie.

[32]  X. Bao,et al.  Direct conversion of methane under nonoxidative conditions , 2003 .

[33]  X. Bao,et al.  Towards guest-zeolite interactions: an NMR spectroscopic approach. , 2002, Chemistry.

[34]  Danhong Zhou,et al.  Methane Dehydrogenation and Coupling to Ethylene over a Mo/HZSM-5 Catalyst: A Density Functional Theory Study , 2012 .

[35]  G. Hutchings,et al.  Catalytic aromatization of methane. , 2014, Chemical Society reviews.

[36]  R. Lobo,et al.  Ethane and ethylene aromatization on zinc-containing zeolites , 2017 .

[37]  B. Weckhuysen,et al.  Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts , 1998 .

[38]  Yang Song,et al.  A clue to exploration of the pathway of coke formation on Mo/HZSM-5 catalyst in the non-oxidative methane dehydroaromatization at 1073 K , 2014 .

[39]  L. Cao,et al.  Density Functional Theory Study on Structure of Molybdenum Carbide and Catalytic Mechanism for Methane Activation over ZSM-5 Zeolite , 2010 .

[40]  Linsheng Wang,et al.  Bifunctional Catalysis of Mo/HZSM-5 in the Dehydroaromatization of Methane to Benzene and Naphthalene XAFS/TG/DTA/MASS/FTIR Characterization and Supporting Effects , 1999 .

[41]  X. Bao,et al.  Methane Dehydro-aromatization under Nonoxidative Conditions over Mo/HZSM-5 Catalysts: EPR Study of the Mo Species on/in the HZSM-5 Zeolite , 2000 .

[42]  F. Solymosi,et al.  Conversion of methane to benzene over Mo2C and Mo2C/ZSM-5 catalysts , 1996 .

[43]  R. Ohnishi,et al.  Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane with CO/CO2 to benzene and naphthalene , 2000 .

[44]  Israel E. Wachs,et al.  Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion , 2015, Science.

[45]  X. Bao,et al.  Methane dehydroaromatization over Mo/HZSM-5: A study of catalytic process , 2006 .

[46]  X. Bao,et al.  In Situ 1H MAS NMR Spectroscopic Observation of Proton Species on a Mo‐Modified HZSM‐5 Zeolite Catalyst for the Dehydroaromatization of Methane , 2000 .

[47]  C. Peden,et al.  Studies of the Active Sites for Methane Dehydroaromatization Using Ultrahigh-Field Solid-State 95Mo NMR Spectroscopy , 2009 .

[48]  Jiasheng Huang,et al.  Dehydrogenation and aromatization of methane under non-oxidizing conditions , 1993 .

[49]  P. Pistorius,et al.  Study on Reduction of MoO2 Powders with CO to Produce Mo2C , 2016 .

[50]  A. D. de Dios,et al.  13C NMR spectroscopy of 13C1-labeled octanethiol-protected Au nanoparticles: shifts, relaxations, and particle-size effect. , 2003, Journal of the American Chemical Society.

[51]  X. Bao,et al.  Recent progress in methane dehydroaromatization: From laboratory curiosities to promising technology , 2013 .

[52]  W. Cui,et al.  Study on the induction period of methane aromatization over Mo/HZSM-5: partial reduction of Mo species and formation of carbonaceous deposit , 1999 .