Plume–ridge interaction studied at the Galápagos spreading center: Evidence from 226Ra–230Th–238U and 231Pa–235U isotopic disequilibria

[1]  B. Hanan,et al.  Morphological and geochemical variations along the eastern Galápagos Spreading Center , 2005 .

[2]  Rowena B. Lohman,et al.  Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling , 2005 .

[3]  R. Hékinian,et al.  U-series disequilibria in MORB from the Garrett Transform and implications for mantle melting , 2004 .

[4]  T. Elliott,et al.  Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry. , 2004, Analytical chemistry.

[5]  E. Engdahl,et al.  Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle , 2004, Science.

[6]  F. Hauff,et al.  Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m.y.: Constraints from morphology, geochemistry, and magnetic anomalies , 2003 .

[7]  J. Canales,et al.  Morphology and segmentation of the western Galápagos Spreading Center, 90.5°–98°W: Plume‐ridge interaction at an intermediate spreading ridge , 2003 .

[8]  S. Solomon,et al.  Anomalously thin transition zone beneath the Galápagos hotspot , 2003 .

[9]  J. Blichert‐Toft,et al.  Pb‐Hf‐Nd‐Sr isotope variations along the Galápagos Spreading Center (101°–83°W): Constraints on the dispersal of the Galápagos mantle plume , 2003 .

[10]  F. Hauff,et al.  Upwelling and melting of the Iceland plume from radial variation of 238U–230Th disequilibria in postglacial volcanic rocks , 2003 .

[11]  C. Lundstrom An experimental investigation of the diffusive infiltration of alkalis into partially molten peridotite: Implications for mantle melting processes , 2003 .

[12]  C. Kincaid,et al.  Melting, dehydration, and the dynamics of off‐axis plume‐ridge interaction , 2003 .

[13]  D. Fornari,et al.  Genovesa Submarine Ridge: A manifestation of plume‐ridge interaction in the northern Galápagos Islands , 2003 .

[14]  R. Sohn,et al.  Melt migration in plume–ridge systems , 2003 .

[15]  A. Kerr,et al.  Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Galápagos hot spot tracks , 2003 .

[16]  C. H. Langmuir,et al.  The importance of water to oceanic mantle melting regimes , 2003, Nature.

[17]  D. Geist Correction to “Volcanic evolution in the Galápagos: The dissected shield of Volcan Ecuador” by D. Geist, W. M. White, F. Albarede, K. Harpp, R. Reynolds, J. Blichert‐Toft, and M. Kurz , 2003 .

[18]  J. Canales,et al.  Crustal thickness along the western Galápagos Spreading Center and the compensation of the Galápagos hotspot swell , 2002 .

[19]  J. Mahoney,et al.  Correlated geophysical, geochemical, and volcanological manifestations of plume‐ridge interaction along the Galápagos Spreading Center , 2002 .

[20]  D. Fornari,et al.  Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise , 2002 .

[21]  F. Albarède,et al.  Volcanic evolution in the Galápagos: The dissected shield of Volcan Ecuador , 2002 .

[22]  R. Werner FS/RV SONNE Fahrtbericht SO158 = Cruise report SO158 : MEGAPRINT ; Multidisciplinary Examination of Galápagos Plume Ridge Interaction ; Isla de Pascua - Guayaquil, July 15 - August 20, 2001 , 2002 .

[23]  J. Blichert‐Toft,et al.  Hf isotope geochemistry of the Galapagos Islands , 2001 .

[24]  K. Rubin Analysis of 232Th/230Th in volcanic rocks: a comparison of thermal ionization mass spectrometry and other methodologies , 2001 .

[25]  W. White,et al.  Tracing a mantle plume: Isotopic and trace element variations of Galápagos seamounts , 2001 .

[26]  B. Murton,et al.  238U–230Th constraints on mantle upwelling and plume–ridge interaction along the Reykjanes Ridge , 2001 .

[27]  D. Garbe‐Schönberg,et al.  Existence of complex spatial zonation in the Galápagos plume , 2000 .

[28]  T. Simkin,et al.  Fernandina Volcano's evolved, well-mixed basalts : Mineralogical and petrological constraints on the nature of the Galapagos plume , 2000 .

[29]  M. Kurz,et al.  Dynamics of the Galapagos hotspot from helium isotope geochemistry , 1999 .

[30]  B. Wood,et al.  The role of clinopyroxene in generating U-series disequilibrium during mantle melting , 1999 .

[31]  J. Morgan,et al.  Asthenosphere flow model of hotspot-ridge interactions: a comparison of Iceland and Kerguelen , 1998 .

[32]  D. Geist,et al.  Evolution of Galapagos Magmas: Mantle and Crustal Fractionation without Assimilation , 1998 .

[33]  B. Hanan,et al.  Investigating solid mantle upwelling beneath mid-ocean ridges using U-series disequilibria. II. A local study at 33°S Mid-Atlantic Ridge , 1998 .

[34]  C. Lundstrom,et al.  Investigating solid mantle upwelling rates beneath mid-ocean ridges using U-series disequilibria, 1: a global approach , 1998 .

[35]  E. Hooft,et al.  Variations in axial morphology along the Galápagos spreading center and the influence of the Galápagos hotspot , 1997 .

[36]  C. Gable,et al.  Interaction of mantle plumes and migrating mid-ocean ridges: Implications for the Galápagos plume-ridge system , 1997 .

[37]  C. Langmuir,et al.  Constraints on mantle melting at mid-ocean ridges from global 238U–230Th disequilibrium data , 1996, Nature.

[38]  C. Langmuir,et al.  Ridge-hotspot interaction along the Mid-Atlantic Ridge between 37°30′ and 40°30′N: the UTh disequilibrium evidence , 1996 .

[39]  C. Gable,et al.  The dynamics of off-axis plume-ridge interaction in the uppermost mantle , 1996 .

[40]  Michael R. Perfit,et al.  Mantle Melting and Basalt Extraction by Equilibrium Porous Flow , 1995, Science.

[41]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[42]  F. Ryerson,et al.  Compositional controls on the partitioning of U, Th, Ba, Pb, Sr and Zr between clinopyroxene and haplobasaltic melts: implications for uranium series disequilibria in basalts , 1994 .

[43]  J. Lupton,et al.  Mantle Plume Helium in Submarine Basalts from the Gal�pagos Platform , 1993, Science.

[44]  A. McBirney,et al.  Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume , 1993 .

[45]  Marc Spiegelman,et al.  Consequences of melt transport for uranium series disequilibrium in young lavas , 1993 .

[46]  P. Beattie Uranium–thorium disequilibria and partitioning on melting of garnet peridotite , 1993, Nature.

[47]  K. Hirose,et al.  Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond , 1993 .

[48]  C. Deniel,et al.  High Th/U ratios in subcontinental lithospheric mantle: mass spectrometric measurement of Th isotopes in Gaussberg lamproites , 1992 .

[49]  J. Schilling Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges , 1991, Nature.

[50]  Norman H. Sleep,et al.  Hotspots and Mantle Plumes' Some Phenomenology , 1990 .

[51]  A. McBirney,et al.  Plume-asthenosphere mixing beneath the Galapagos archipelago , 1988, Nature.

[52]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[53]  Donald L. Turcotte,et al.  Implications of a two-component marble-cake mantle , 1986, Nature.

[54]  S. Verma,et al.  Neodymium isotopic evidence for Galapagos hotspot—spreading centre system evolution , 1983, Nature.

[55]  J. Devine,et al.  Galapagos Hot Spot-Spreading Center System: 1. Spatial petrological and geochemical variations (83°W-101°W) , 1982 .

[56]  W. J. Morgan Rodriguez, Darwin, Amsterdam, ..., A second type of Hotspot Island , 1978 .

[57]  W. J. Morgan,et al.  Plate Motions and Deep Mantle Convection , 1972 .