The Role of Neurotransmitter Receptors in Mental and Behavioral Disorders: a Biomedical Text Mining Approach

iii OZ iv ACKNOWLEDGMENTS vi LIST OF TABLES xi LIST OF FIGURES xii LIST OFABBREVIATIONS xiii

[1]  Rainer Hoch,et al.  On the evaluation of document analysis components by recall, precision, and accuracy , 1999, Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99 (Cat. No.PR00318).

[2]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[3]  B. Taneri,et al.  Role of neurotransmitter receptors in behavioral disorders - a high-throughput analysis using text mining , 2011, Proceedings of the 6th International Symposium on Health Informatics and Bioinformatics.

[4]  Ophir Frieder,et al.  SENTINEL: a multiple engine information retrieval and visualization system , 1999 .

[5]  Hong Yu,et al.  Detecting hedge cues and their scope in biomedical text with conditional random fields , 2010, J. Biomed. Informatics.

[6]  Padhraic Smyth,et al.  Knowledge Discovery and Data Mining: Towards a Unifying Framework , 1996, KDD.

[7]  Hakan Altinçay,et al.  Classifier subset selection for biomedical named entity recognition , 2009, Applied Intelligence.

[8]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[9]  Robert S. Stufflebeam Neurons, Synapses, Action Potentials, and Neurotransmission , 2008 .

[10]  Ronald Rosenfeld,et al.  Efficient sampling and feature selection in whole sentence maximum entropy language models , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[11]  B. Everitt,et al.  Dopamine receptors in the learning, memory and drug reward circuitry. , 2009, Seminars in cell & developmental biology.

[12]  T. Lehtimäki,et al.  Serotonin receptor 2A gene and the influence of childhood maternal nurturance on adulthood depressive symptoms. , 2007, Archives of general psychiatry.

[13]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[14]  Christopher D. Manning,et al.  Enriching the Knowledge Sources Used in a Maximum Entropy Part-of-Speech Tagger , 2000, EMNLP.

[15]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[17]  Dan Klein,et al.  Accurate Unlexicalized Parsing , 2003, ACL.

[18]  J Douglas Armstrong,et al.  Synapse proteomics of multiprotein complexes: en route from genes to nervous system diseases. , 2005, Human molecular genetics.

[19]  P. Gorwood,et al.  Genetics of dopamine receptors and drug addiction: a comprehensive review , 2009, Behavioural pharmacology.

[20]  James Allan,et al.  Topic Detection and Tracking , 2002, The Information Retrieval Series.

[21]  Stanislaw Osowski,et al.  Gene selection for cancer classification , 2009 .

[22]  Jan Freudenberg,et al.  A similarity-based method for genome-wide prediction of disease-relevant human genes , 2002, ECCB.

[23]  Sabine Buchholz,et al.  Introduction to the CoNLL-2000 Shared Task Chunking , 2000, CoNLL/LLL.

[24]  Alfonso Valencia,et al.  Overview of BioCreAtIvE: critical assessment of information extraction for biology , 2005, BMC Bioinformatics.

[25]  Dragomir R. Radev,et al.  Identifying gene-disease associations using centrality on a literature mined gene-interaction network , 2008, ISMB.

[26]  A. Feinberg,et al.  The emerging science of epigenomics. , 2006, Human molecular genetics.

[27]  Alfonso Valencia Text mining in genomics and systems biology , 2008, DTMBIO '08.

[28]  Teruyoshi Hishiki,et al.  Extraction of Gene-Disease Relations from Medline Using Domain Dictionaries and Machine Learning , 2005, Pacific Symposium on Biocomputing.

[29]  Seth Kulick,et al.  Integrated Annotation for Biomedical Information Extraction , 2004, HLT-NAACL 2004.

[30]  A. Donner,et al.  Pitfalls of and controversies in cluster randomization trials. , 2004, American journal of public health.

[31]  Chitta Baral,et al.  Mining Gene-Disease Relationships from Biomedical Literature: Weighting Proteinprotein Interactions and Connectivity , 2006, Pacific Symposium on Biocomputing.

[32]  Chew Lim Tan,et al.  Proposing a New Term Weighting Scheme for Text Categorization , 2006, AAAI.

[33]  A. Brand,et al.  A new public health genomics model for common complex diseases, with an application to common behavioral disorders. , 2012, Personalized medicine.

[34]  L. Grivell,et al.  Text mining for biology - the way forward: opinions from leading scientists , 2008, Genome Biology.

[35]  Lada A. Adamic,et al.  A literature based method for identifying gene-disease connections , 2002, Proceedings. IEEE Computer Society Bioinformatics Conference.

[36]  Ron Kohavi,et al.  The Case against Accuracy Estimation for Comparing Induction Algorithms , 1998, ICML.

[37]  Hao Chen,et al.  Content-rich biological network constructed by mining PubMed abstracts , 2004, BMC Bioinformatics.

[38]  Irving John Good,et al.  The Estimation of Probabilities: An Essay on Modern Bayesian Methods , 1965 .

[39]  Stephan Bloehdorn,et al.  Text classification by boosting weak learners based on terms and concepts , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[40]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[41]  Hui Lu,et al.  Correlation between gene expression profiles and protein-protein interactions within and across genomes , 2005, Bioinform..

[42]  Ah-Hwee Tan,et al.  Text Mining: The state of the art and the challenges , 2000 .

[43]  Anders Krogh,et al.  Prediction of Signal Peptides and Signal Anchors by a Hidden Markov Model , 1998, ISMB.

[44]  Andreas Hotho,et al.  A Brief Survey of Text Mining , 2005, LDV Forum.

[45]  Marti A. Hearst Untangling Text Data Mining , 1999, ACL.

[46]  B. Blencowe,et al.  An RNA map predicting Nova-dependent splicing regulation , 2006, Nature.

[47]  T. Gojobori,et al.  Identification of neurotransmitter receptor genes under significantly relaxed selective constraint by orthologous gene comparisons between humans and rodents. , 2002, Molecular biology and evolution.

[48]  Wen-Lian Hsu,et al.  HypertenGene: extracting key hypertension genes from biomedical literature with position and automatically-generated template features , 2009, BMC Bioinformatics.

[49]  Ronan Cummins,et al.  Evolving General Term-Weighting Schemes for Information Retrieval: Tests on Larger Collections , 2005, Artificial Intelligence Review.

[50]  Hisham Al-Mubaid,et al.  A New Text Mining Approach for Finding Protein-to-Disease Associations , 2005 .

[51]  Philip S. Yu,et al.  Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..