Discrete-time Hybrid Modeling and Verification of the Batch Evaporator Process Benchmark

For hybrid systems described by interconnections of linear discrete-time dynamical systems, automata, and propositional logic rules, we recently proposed the Mixed Logical Dynamical (MLD) systems formalism and the language HYSDEL (Hybrid System Descrip- tion Language) as a modeling tool. For MLD models, we developed a reachability analysis algorithm which combines forward reach set computation and feasibility analysis of trajectories by linear and mixed-integer linear programming. In this paper the versatility of the overall analysis tool is illustrated on the batch evaporator benchmark process.

[1]  Alberto Bemporad,et al.  Performance analysis of piecewise linear systems and model predictive control systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[2]  H. P. Williams Logical problems and integer programming , 1977 .

[3]  A. J. Kfoury,et al.  A Programming Approach to Computability , 1982, Texts and Monographs in Computer Science.

[4]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[5]  Manfred Morari,et al.  Propositional logic in control and monitoring problems , 1997 .

[6]  Amir Pnueli,et al.  Reachability Analysis of Dynamical Systems Having Piecewise-Constant Derivatives , 1995, Theor. Comput. Sci..

[7]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[8]  C. Pinello,et al.  Automotive engine control and hybrid systems: challenges and opportunities , 2000, Proceedings of the IEEE.

[9]  Alberto Bemporad,et al.  Performance driven reachability analysis for optimal scheduling and control of hybrid systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[10]  Ralf Huuck,et al.  Verifying Timing Aspects of VHS Case Study 1 , 1999 .

[11]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[12]  John Lygeros,et al.  Controlled Invariance of Discrete Time Systems , 2000, HSCC.

[13]  Olaf Stursberg,et al.  Reachability Analysis of a Class of Switched Continuous Systems by Integrating Rectangular Approximation and Rectangular Analysis , 1999, HSCC.

[14]  M. Egerstedt,et al.  On the regularization of Zeno hybrid automata , 1999 .

[15]  Amir Pnueli,et al.  Data-Structures for the Verification of Timed Automata , 1997, HART.

[16]  Bruce H. Krogh,et al.  Verification of Polyhedral-Invariant Hybrid Automata Using Polygonal Flow Pipe Approximations , 1999, HSCC.

[17]  Kim Guldstrand Larsen,et al.  Experimental Batch Plant: VHS Case Study 1 using Timed Automata and UPPAAL , 1999 .

[18]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[19]  Gerardo Lafferriere,et al.  A New Class of Decidable Hybrid Systems , 1999, HSCC.

[20]  H. P. Williams,et al.  Model Building in Mathematical Programming , 1979 .

[21]  Panos M. Pardalos,et al.  Modeling and integer programming techniques applied to propositional calculus , 1990, Comput. Oper. Res..

[22]  John Lygeros,et al.  Controllers for reachability specifications for hybrid systems , 1999, Autom..

[23]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[24]  R. Raman,et al.  RELATION BETWEEN MILP MODELLING AND LOGICAL INFERENCE FOR CHEMICAL PROCESS SYNTHESIS , 1991 .

[25]  Richard C. Larson,et al.  Model Building in Mathematical Programming , 1979 .

[26]  Alberto Bemporad,et al.  Optimization-Based Verification and Stability Characterization of Piecewise Affine and Hybrid Systems , 2000, HSCC.

[27]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[28]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[29]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[30]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[31]  P. Antsaklis Special issue on hybrid systems: theory and applications a brief introduction to the theory and applications of hybrid systems , 2000, Proc. IEEE.

[32]  Eduardo D. Sontag,et al.  Interconnected Automata and Linear Systems: A Theoretical Framework in Discrete-Time , 1996, Hybrid Systems.

[33]  Joseph Sifakis,et al.  Integration Graphs: A Class of Decidable Hybrid Systems , 1992, Hybrid Systems.

[34]  John N. Tsitsiklis,et al.  Complexity of stability and controllability of elementary hybrid systems , 1999, Autom..

[35]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[36]  Michael S. Branicky,et al.  Studies in hybrid systems: modeling, analysis, and control , 1996 .

[37]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[38]  John Lygeros,et al.  A Game-Theoretic Approach to Hybrid System Design , 1996, Hybrid Systems.