Environmental Change in the Deep Ocean

Patterns of abundance, biomass, and species richness are reviewed for deep-sea ecosystems. Long-term monitoring studies have indicated that deep-sea ecosystems are sensitive to climatic variability through its influence on the quantity and quality of surface primary production. The potential impacts of climate change, through its effects on primary production and through changes in the temperature, pH, and oxygenation of the deep ocean are explored. It is concluded that deep-sea ecosystems are likely to be highly sensitive to changes in food supply and the physical environment driven by global climate change. As a result, ecosystem services will be negatively impacted with likely positive feedbacks to atmospheric CO2 levels. It is a matter of urgency that baselines are established for diversity, abundance, and biomass of deep-sea ecosystems, particularly for the pelagic realm and that a mechanistic understanding is developed of how food supply and physical parameters affect community structure and function.

[1]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[2]  P. Woodworth,et al.  Declines in phytoplankton cell size in the subtropical oceans estimated from satellite remotely-sensed temperature and chlorophyll, 1998–2007 , 2012 .

[3]  B. Seibel,et al.  Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator , 2008, Proceedings of the National Academy of Sciences.

[4]  S. Libes An introduction to marine biogeochemistry , 1992 .

[5]  Watson W. Gregg,et al.  Ocean primary production and climate: Global decadal changes , 2003 .

[6]  S. Nehring,et al.  Establishment of thermophilic phytoplankton species in the North Sea: biological indicators of climatic changes? , 1998 .

[7]  Alan Cheung,et al.  Surface area and the seabed area, volume, depth, slope, and topographic variation for the world's seas, oceans, and countries. , 2010, Environmental science & technology.

[8]  M. Visbeck,et al.  Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes , 2012 .

[9]  Francisco P Chavez,et al.  Marine primary production in relation to climate variability and change. , 2011, Annual review of marine science.

[10]  H. Schellnhuber,et al.  Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes , 2009, Proceedings of the National Academy of Sciences.

[11]  R. Feely,et al.  Extensive dissolution of live pteropods in the Southern Ocean , 2012 .

[12]  Randa Jabbour,et al.  Deconstructing bathymetric body size patterns in deep-sea gastropods , 2005 .

[13]  Cindy Lee Van Dover,et al.  The Ecology of Deep-Sea Hydrothermal Vents , 2000 .

[14]  G. Beaugrand Marine Biodiversity, Climatic Variability and Global Change , 2014 .

[15]  Toby Tyrrell,et al.  Phytoplankton Calcification in a High-CO2 World , 2008, Science.

[16]  C. N. Roterman,et al.  The biogeography of the yeti crabs (Kiwaidae) with notes on the phylogeny of the Chirostyloidea (Decapoda: Anomura) , 2013, Proceedings of the Royal Society B: Biological Sciences.

[17]  Bruce H. Robison,et al.  Deep pelagic biology , 2004 .

[18]  D. Lea,et al.  Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (experimental results) , 1999 .

[19]  Paul G Falkowski,et al.  The Evolution and Future of Earth’s Nitrogen Cycle , 2010, Science.

[20]  Bruce H. Robison,et al.  The bathypelagic community of Monterey Canyon , 2010 .

[21]  J. Deming,et al.  Global bathymetric patterns of standing stock and body size in the deep-sea benthos , 2006 .

[22]  R. Cowen,et al.  Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum , 2013, Global change biology.

[23]  E. Baker,et al.  Geochemical and physical structure of the hydrothermal plume at the ultramafic-hosted Logatchev hydrothermal field at 14°45′N on the Mid-Atlantic Ridge , 2010 .

[24]  J. Koslow Energetic and life-history patterns of deep-sea benthic, benthopelagic and seamount-associated fish , 1996 .

[25]  W. Sunda Iron and the Carbon Pump , 2010, Science.

[26]  P. Harris,et al.  Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins , 2011 .

[27]  M. Collins,et al.  The thermohaline expressway: the Southern Ocean as a centre of origin for deep‐sea octopuses , 2008, Cladistics : the international journal of the Willi Hennig Society.

[28]  R. Vrijenhoek Genetic diversity and connectivity of deep‐sea hydrothermal vent metapopulations , 2010, Molecular ecology.

[29]  A. Anbar,et al.  Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction , 2011, Proceedings of the National Academy of Sciences.

[30]  Timothy M Shank,et al.  The ecology of seamounts: structure, function, and human impacts. , 2010, Annual review of marine science.

[31]  D. Tittensor,et al.  Predicting global habitat suitability for stony corals on seamounts , 2009 .

[32]  S. Goffredi,et al.  Osedax: Bone-Eating Marine Worms with Dwarf Males , 2004, Science.

[33]  Nicolas Gruber,et al.  Ocean deoxygenation in a warming world. , 2010, Annual review of marine science.

[34]  I. Ekeland,et al.  Sustainability of deep-sea fisheries , 2012 .

[35]  M. Angel,et al.  Vertical Distribution of the Standing Crop of Plankton and Micronekton at Three Stations in the Northeast Atlantic , 2013 .

[36]  Ellen Thomas,et al.  Global decline in ocean ventilation, oxygenation, and productivity during the Paleocene-Eocene Thermal Maximum: Implications for the benthic extinction , 2012 .

[37]  R. Danovaro,et al.  Temperature impacts on deep‐sea biodiversity , 2015, Biological reviews of the Cambridge Philosophical Society.

[38]  D. Harper,et al.  End Ordovician extinctions: A coincidence of causes , 2014 .

[39]  Mati Kahru,et al.  Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean , 2013, Proceedings of the National Academy of Sciences.

[40]  Jennifer A. Devine,et al.  Fisheries: Deep-sea fishes qualify as endangered , 2006, Nature.

[41]  Les Watling,et al.  A proposed biogeography of the deep ocean floor , 2013 .

[42]  H. Moors-Murphy Submarine canyons as important habitat for cetaceans, with special reference to the Gully: A review , 2014 .

[43]  B. Bett,et al.  Decadal-scale changes in shallow-infaunal foraminiferal assemblages at the Porcupine Abyssal Plain, NE Atlantic , 2010 .

[44]  P. Wignall,et al.  Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath , 2014, Scientific Reports.

[45]  M. Rex,et al.  Deep-Sea Biodiversity: Pattern and Scale , 2010 .

[46]  A. Koschinsky,et al.  Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources , 2013 .

[47]  Rudy J. Kloser,et al.  The trophodynamics of marine top predators: Current knowledge, recent advances and challenges , 2015 .

[48]  C. Smith,et al.  The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025 , 2003, Environmental Conservation.

[49]  H Strauss,et al.  Linking geology, fluid chemistry, and microbial activity of basalt‐ and ultramafic‐hosted deep‐sea hydrothermal vent environments , 2013, Geobiology.

[50]  A. Boetius,et al.  Seafloor oxygen consumption fuelled by methane from cold seeps , 2013 .

[51]  Jelle Bijma,et al.  Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes , 1997, Nature.

[52]  G. Menezes,et al.  The importance of deep-sea vulnerable marine ecosystems for demersal fish in the Azores , 2015 .

[53]  P. Tyler,et al.  Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the Southern Ocean , 2012, PloS one.

[54]  R. Vrijenhoek,et al.  Are hydrothermal vent animals living fossils , 2003 .

[55]  N. Prouty,et al.  The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for palaeoceanography , 2014 .

[56]  R. Watson,et al.  Global reductions in seafloor biomass in response to climate change , 2013, Global change biology.

[57]  C. Devey,et al.  Responsible Science at Hydrothermal Vents , 2007 .

[58]  J. Sarmiento,et al.  Projecting global marine biodiversity impacts under climate change scenarios , 2009 .

[59]  Brian M. Hopkinson,et al.  Effect of Ocean Acidification on Iron Availability to Marine Phytoplankton , 2010, Science.

[60]  J. Karstensen,et al.  The oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans , 2008 .

[61]  C. McClain,et al.  The dynamics of biogeographic ranges in the deep sea , 2010, Proceedings of the Royal Society B: Biological Sciences.

[62]  K. Kaschner Air‐Breathing Visitors to Seamounts: Marine Mammals , 2008 .

[63]  Colin R. Janssen,et al.  Microplastic pollution in deep-sea sediments. , 2013, Environmental pollution.

[64]  Martin Solan,et al.  Hadal trenches: the ecology of the deepest places on Earth. , 2010, Trends in ecology & evolution.

[65]  A. Rowden,et al.  Submarine canyons: hotspots of benthic biomass and productivity in the deep sea , 2010, Proceedings of the Royal Society B: Biological Sciences.

[66]  David A. Siegel,et al.  Climate-driven trends in contemporary ocean productivity , 2006, Nature.

[67]  A. Paulmier,et al.  Oxygen minimum zones (OMZs) in the modern ocean , 2009 .

[68]  A. Rogers,et al.  Body Size Versus Depth: Regional and Taxonomical Variation in Deep-Sea Meio- and Macrofaunal Organisms. , 2015, Advances in marine biology.

[69]  A. Thurnherr,et al.  Can the source–sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test , 2015, Proceedings of the Royal Society B: Biological Sciences.

[70]  Rudy J. Kloser,et al.  Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting , 2009 .

[71]  S. Comeau,et al.  Effects of ocean acidification on overwintering juvenile Arctic pteropods Limacina helicina , 2012 .

[72]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[73]  A. L. Rice,et al.  Seasonal sedimentation of phytoplankton to the deep-sea benthos , 1983, Nature.

[74]  D. Tittensor,et al.  Energetics of life on the deep seafloor , 2012, Proceedings of the National Academy of Sciences.

[75]  J. Bruno,et al.  The Impact of Climate Change on the World’s Marine Ecosystems , 2010, Science.

[76]  Carrie V. Kappel,et al.  Global imprint of climate change on marine life , 2013 .

[77]  A. Baselga The relationship between species replacement, dissimilarity derived from nestedness, and nestedness , 2012 .

[78]  A. Clarke,et al.  Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[79]  A. Oschlies,et al.  Jelly biomass sinking speed reveals a fast carbon export mechanism , 2013 .

[80]  Alex Rogers,et al.  Global ocean conveyor lowers extinction risk in the deep sea , 2014 .

[81]  A. Rogers The Biology of Seamounts , 1994 .

[82]  D. L. Aksnes,et al.  Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass , 2012 .

[83]  M. Rex,et al.  Geographic evidence for source–sink dynamics in deep‐sea neogastropods of the eastern North Atlantic: an approach using nested analysis , 2013 .

[84]  K. Caldeira What Corals are Dying to Tell Us About CO2 and Ocean Acidification , 2007 .

[85]  Andreas Oschlies,et al.  Can we predict the direction of marine primary production change under global warming? , 2011 .

[86]  B. Bett,et al.  Temporal changes (1989-1999) in deep-sea metazoan meiofaunal assemblages on the Porcupine Abyssal Plain, NE Atlantic , 2010 .

[87]  A. Rogers,et al.  Deep-sea litter: a comparison of seamounts, banks and a ridge in the Atlantic and Indian Oceans reveals both environmental and anthropogenic factors impact accumulation and composition , 2015, Front. Mar. Sci..

[88]  A. Coe,et al.  The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum , 2014 .

[89]  I. Priede,et al.  Colonization of the deep sea by fishes , 2013, Journal of fish biology.

[90]  Alan Williams,et al.  A test of the seamount oasis hypothesis: seamounts support higher epibenthic megafaunal biomass than adjacent slopes , 2010 .

[91]  Wei-Jun Yang,et al.  When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian Oceans. , 2012, Molecular biology and evolution.

[92]  P. Lambshead,et al.  Marine nematode deep‐sea biodiversity – hyperdiverse or hype? , 2003 .

[93]  Carlos M. Duarte,et al.  Thresholds of hypoxia for marine biodiversity , 2008, Proceedings of the National Academy of Sciences.

[94]  J. Raven,et al.  Changes in pH at the exterior surface of plankton with ocean acidification , 2012 .

[95]  David A. Pearce,et al.  The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography , 2012, PLoS biology.

[96]  C. Korte,et al.  Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution , 2014, Proceedings of the National Academy of Sciences.

[97]  A. Rogers The role of the oceanic oxygen minima in generating biodiversity in the deep sea , 2000 .

[98]  P. Wiebe,et al.  Diversity and community structure of pelagic fishes to 5000 m depth in the Sargasso Sea , 2010 .

[99]  R. P. Stone,et al.  Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions , 2006, Coral Reefs.

[100]  G. Partington,et al.  Chatham Rise nodular phosphate — Modelling the prospectivity of a lag deposit (off-shore New Zealand): A critical tool for use in resource development and deep sea mining , 2015 .

[101]  J. Peckmann,et al.  U/Th dating of cold-seep carbonates: An initial comparison , 2010 .

[102]  Walter Jetz,et al.  Global patterns and predictors of marine biodiversity across taxa , 2010, Nature.

[103]  Alastair Brown,et al.  The effects of changing climate on faunal depth distributions determine winners and losers , 2014, Global change biology.

[104]  A. Ishida,et al.  Risk maps for Antarctic krill under projected Southern Ocean acidification , 2013 .

[105]  S. Hove,et al.  Services from the deep: Steps towards valuation of deep sea goods and services , 2012 .

[106]  P. Tyler,et al.  Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor , 1991 .

[107]  Peter Brueggeman,et al.  Deep Sea Ocean Trenches and their Fauna , 1989 .

[108]  Chris Yesson,et al.  Marine Pollution Bulletin xxx (2013) xxx–xxx Contents lists available at ScienceDirect Marine Pollution Bulletin , 2022 .

[109]  J. Fuhrman,et al.  Global declines in oceanic nitrification rates as a consequence of ocean acidification , 2010, Proceedings of the National Academy of Sciences.

[110]  G. Hosie,et al.  Climate change cascades: Shifts in oceanography, species' ranges and subtidal marine community dynamics in eastern Tasmania , 2011 .

[111]  A. Milligan Oceanography: Plankton in an acidified ocean , 2012 .

[112]  C. M. Duarte,et al.  Temperature dependence of planktonic metabolism in the ocean , 2012 .

[113]  B. Bett,et al.  Climate, carbon cycling, and deep-ocean ecosystems , 2009, Proceedings of the National Academy of Sciences.

[114]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[115]  Richard C. Thompson,et al.  The deep sea is a major sink for microplastic debris , 2014, Royal Society Open Science.

[116]  J. Grassle,et al.  Deep-Sea Species Richness: Regional and Local Diversity Estimates from Quantitative Bottom Samples , 1992, The American Naturalist.

[117]  B. Seibel Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones , 2011, Journal of Experimental Biology.

[118]  S. Comeau,et al.  Impact of ocean acidification on a key Arctic pelagic mollusc ( Limacina helicina ) , 2009 .

[119]  T. Shank,et al.  Deep-sea hydrothermal vent communities of the Logatchev area (14°45′N, Mid-Atlantic Ridge): diverse biotopes and high biomass , 2000, Journal of the Marine Biological Association of the United Kingdom.

[120]  A. Taira,et al.  Recent scientific and operational achievements of D/V Chikyu , 2014, Geoscience Letters.

[121]  U. Riebesell,et al.  Enhanced biological carbon consumption in a high CO2 ocean , 2006, Nature.

[122]  Gerald H. Taranto,et al.  A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework , 2014 .

[123]  P. Tyler,et al.  Man and the Last Great Wilderness: Human Impact on the Deep Sea , 2011, PloS one.

[124]  Richard A. Feely,et al.  Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans , 2004, Science.

[125]  Scott C. Doney,et al.  Projected 21st century decrease in marine productivity: a multi-model analysis , 2009 .

[126]  A. Rowden,et al.  A Southern Hemisphere Bathyal Fauna Is Distributed in Latitudinal Bands , 2011, Current Biology.

[127]  ANTON FR. BRUUN,et al.  The Abyssal Fauna: Its Ecology, Distribution and Origin , 1956, Nature.

[128]  X. Durrieu de Madron,et al.  A review of the role of submarine canyons in deep-ocean exchange with the shelf , 2009 .

[129]  D. Connelly,et al.  Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system , 2014 .

[130]  D. Crocker,et al.  Benthic foraging on seamounts: A specialized foraging behavior in a deep‐diving pinniped , 2012 .

[131]  A. Oschlies,et al.  Enhanced carbon overconsumption in response to increasing temperatures during a mesocosm experiment , 2012 .

[132]  L. Levin,et al.  Ocean oxygen minima expansions and their biological impacts , 2010 .

[133]  J. Raven,et al.  Erratum: Changes in pH at the exterior surface of plankton with ocean acidification (Nature Climate Change (2012) 2 (510-513)) , 2012 .

[134]  Fei-xue Fu,et al.  Nutrient Cycles and Marine Microbes in a CO2-Enriched Ocean , 2009 .

[135]  Thomas J. Webb,et al.  Biodiversity's Big Wet Secret: The Global Distribution of Marine Biological Records Reveals Chronic Under-Exploration of the Deep Pelagic Ocean , 2010, PloS one.

[136]  Scott C. Doney,et al.  Response of ocean ecosystems to climate warming , 2004 .

[137]  M. Caley,et al.  Global Patterns and Predictions of Seafloor Biomass Using Random Forests , 2010, PloS one.

[138]  U. Sommer,et al.  Changes in biogenic carbon flow in response to sea surface warming , 2009, Proceedings of the National Academy of Sciences.

[139]  Peter Rothery,et al.  Long-term decline in krill stock and increase in salps within the Southern Ocean , 2004, Nature.

[140]  B. Planque,et al.  Strengths and Weaknesses of the Management and Monitoring of Deep-Water Stocks, Fisheries, and Ecosystems in Various Areas of the World—A Roadmap Toward Sustainable Deep-Water Fisheries in the Northeast Atlantic? , 2013 .

[141]  J. Raven Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. , 2009 .

[142]  O. Godø,et al.  Vertical Structure, Biomass and Topographic Association of Deep-Pelagic Fishes in Relation to a Mid-Ocean Ridge System , 2008 .

[143]  C. Brownlee,et al.  From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification , 2009 .

[144]  A. Rogers,et al.  The global distribution of seamounts based on 30 arc seconds bathymetry data , 2011 .

[145]  I. Priede,et al.  Trends in body size across an environmental gradient: A differential response in scavenging and non-scavenging demersal deep-sea fish , 2005, Proceedings of the Royal Society B: Biological Sciences.

[146]  L. Quetin,et al.  Life Under Antarctic Pack Ice: A Krill Perspective , 2009 .

[147]  M. Hannington,et al.  The abundance of seafloor massive sulfide deposits , 2011 .

[148]  Dong Dazhong,et al.  Geological features, major discoveries and unconventional petroleum geology in the global petroleum exploration , 2010 .

[149]  D. Tittensor,et al.  Global habitat suitability of cold‐water octocorals , 2012 .

[150]  D. Canfield,et al.  High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth , 2013 .

[151]  Paul A. Tyler,et al.  Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre , 2012, Nature Communications.

[152]  A. Rogers,et al.  Corals on seamounts , 2008 .

[153]  Kenneth L. Smith,et al.  Rapid changes and long-term cycles in the benthic megafaunal community observed over 24 years in the abyssal northeast Pacific , 2014 .

[154]  S. Litvin,et al.  Oceanographic and biological effects of shoaling of the oxygen minimum zone. , 2013, Annual review of marine science.

[155]  K. Olu,et al.  Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins , 1998 .

[156]  A. Gale,et al.  First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction , 2014, Proceedings of the Royal Society B: Biological Sciences.

[157]  R. Feely,et al.  Ocean acidification: the other CO2 problem. , 2009, Annual review of marine science.

[158]  C. German,et al.  Deep-sea mining of seafloor massive sulfides , 2010 .

[159]  L. Levin Oxygen minimum zone Benthos: Adaptation and community response to hypoxia , 2003 .

[160]  S. Sievert,et al.  Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. , 2011, Annual review of marine science.

[161]  L. Lundsten,et al.  Endemicity, Biogeography, Composition, and Community Structure On a Northeast Pacific Seamount , 2009, PloS one.

[162]  Richard W. Brill,et al.  A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments , 1994 .

[163]  D. Tittensor,et al.  Seamounts as refugia from ocean acidification for cold-water stony corals , 2010 .

[164]  David S.M. Billett,et al.  Long-term change in the abyssal NE Atlantic: The ‘Amperima Event’ revisited , 2010 .

[165]  Roberto Danovaro,et al.  Challenging the paradigms of deep-sea ecology. , 2014, Trends in ecology & evolution.

[166]  B. Worm,et al.  Global phytoplankton decline over the past century , 2010, Nature.

[167]  A. Genin Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies , 2004 .

[168]  K. Døving,et al.  Ocean acidification impairs olfactory discrimination and homing ability of a marine fish , 2009, Proceedings of the National Academy of Sciences.

[169]  A. Knoll,et al.  Geochemical evidence for widespread euxinia in the Later Cambrian ocean , 2011, Nature.