A moment inequality for multicategory support vector machines

The success of support vector machines in binary classification relies on the fact that hinge loss utilized in the risk minimization targets the Bayes rule. Recent research explores some extensions of this large margin based method to the multicategory case. We obtain a moment inequality for multicategory support vector machine loss minimizers with fast rate of convergence.

[1]  Ambuj Tewari,et al.  On the Consistency of Multiclass Classification Methods , 2007, J. Mach. Learn. Res..

[2]  Xiaotong Shen,et al.  On L1-Norm Multiclass Support Vector Machines , 2007 .

[3]  Michael I. Jordan,et al.  Convexity, Classification, and Risk Bounds , 2006 .

[4]  Ingo Steinwart,et al.  Fast Rates for Support Vector Machines , 2005, COLT.

[5]  S. Sathiya Keerthi,et al.  Which Is the Best Multiclass SVM Method? An Empirical Study , 2005, Multiple Classifier Systems.

[6]  Tong Zhang,et al.  Statistical Analysis of Some Multi-Category Large Margin Classification Methods , 2004, J. Mach. Learn. Res..

[7]  Tong Zhang Statistical behavior and consistency of classification methods based on convex risk minimization , 2003 .

[8]  A. Tsybakov,et al.  Optimal aggregation of classifiers in statistical learning , 2003 .

[9]  Yi Lin,et al.  Support Vector Machines and the Bayes Rule in Classification , 2002, Data Mining and Knowledge Discovery.

[10]  Yann Guermeur,et al.  Combining Discriminant Models with New Multi-Class SVMs , 2002, Pattern Analysis & Applications.

[11]  Koby Crammer,et al.  On the Learnability and Design of Output Codes for Multiclass Problems , 2002, Machine Learning.

[12]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[13]  Koby Crammer,et al.  On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..

[14]  S. R. Jammalamadaka,et al.  Empirical Processes in M-Estimation , 2001 .

[15]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[16]  E. Mammen,et al.  Smooth Discrimination Analysis , 1999 .

[17]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[18]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[19]  S. A. van de Geer,et al.  Lectures on Empirical Processes: Theory and Statistical Applications , 2007 .

[20]  Yoonkyung Lee,et al.  CHARACTERIZING THE SOLUTION PATH OF MULTICATEGORY SUPPORT VECTOR MACHINES , 2006 .

[21]  H. Zou The Margin Vector , Admissible Loss and Multi-class Margin-based Classifiers , 2005 .

[22]  Yi Lin Multicategory Support Vector Machines, Theory, and Application to the Classification of . . . , 2003 .

[23]  Shuguang Song,et al.  An Upper Bound for Uniform Entropy , 2002 .

[24]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[25]  Jason Weston,et al.  Multi-Class Support Vector Machines , 1998 .